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ABSTRACTj

A practical design method for highly-loaded blades in an isolated
cascade.'is presented in this thesis-The flow is assumed to be
incompressible and inviscid. The upstream inlet flow condition is taken
to be uniform. The gresent goals of this research are to provide a
practical numerical code for the design problem, and a non-linear theory

* which can be easily expanded to three-dimensions. The theory is based in
part on the Clebsh formulation. The blade profile is determined '-

iteratively through the blade boundary conditions using a "smoothing" A
technique. A practical numerical code is presented for the design problem
using "partial smoothin4g. The program gives very fast convergence
solutions with satisfactory accuracy for practical solidity range.
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Chapter 1 : Introduction

This thesis presents a technique for solving the design problem (the

inverse problem) for highly loaded blades in an isolated cascade. In the

present study, the flow is treated as if it were incompressible and inviscid, and

the upstream inlet flow condition is assumed to be uniform.

Historically, there have been several approaches to the design problem.

In one approach, for example, the velocity distributions on both surfaces of the

blade are specified, and the resulting blade shape is calculated. The advantage

of this technique is that the designer can prescribe surface pressure

distributions which minimize the chance of flow separation. However, the

resulting blade geometry is not guaranteed to have a realistic configuration:

the blade may be wavy, or even have negative thickness.

In a second approach, the velocity distribution on one surface and the

profile thickness distribution are specified, and the resulting blade shape is

calculated. This formulation does not guarantee obtaining an acceptable

pressure distribution on the second blade surface. Moreover, the resulting

loading distribution may not be structurally favorable: for example, the

loading may be maximum where the blade is thinnest.

In a third approach, the loading and thickness (or 'blockage') distributions

are specified, and the resulting blade shape is calculated. This formulation

does not guarantee giving acceptable pressure distributions on either of the

blade surfaces, but the resulting blade shape can be guaranteed to be at least

structurally sound.

• '° . • . . • o . .. o . -o . . o ° . . ' * - . . , . .- * '.---. . -. * - -° . - - - ° - . - , . * - •- . -
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In applying classical aerodynamics methods to these problems, the

presence of the blades and their effects on the flow can be modeled by

distributing singularities (vortices, sources and sinks) on the blade camber or

blade surfaces. Lewis [I] carried out the design problem using the first two
approaches mentioned above. His analysis is based on Martensen's method 121:

vortices are distributed on each of the blade surfaces, and the induced flow

field in the cascade plane is calculated using the Biot-Savart law.

Kashiwabara [3] carried out the design problem using the first of the

above approaches by arranging vortices, sources and sinks along the blade

camber. This theory also attempts to take into account some three-

dimensional effects, and can be used for designing blades in axial, mixed and

radial turbomachines.

These design theories, based in part on the Biot-Savart law, are simple

for cascade calculation only. Until recently [41, only linearized theories have

been developed to design three-dimensional blades [51, [6].

One goal of the present project is to provide a practical numerical code

for the design problem which can give good accuracy and fast convergence

solutions. An equally important goal is to provide a non-linear theory which

can be practically expanded to three-dimensions. The present theory is based

in part on the Clebsh formulation which has been successfully investigated by

Tan, Wang, Hawthorne and McCune [4] in their study of a three-dimensionel
0

design method for highly-loaded but infinitely thin blades.

In the present study, the blade profile is determined iteratively through

the blade boundary conditions using a "smoothing" technique: the velocity

potential is expressed in a series of "smoothing" functions developed by

S . .. ,. . .-. ,. . , .. .,. . . . . ,-. .. - : ,: : ,.. .
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McCune [Appendix C1. The "smoothing" technique represents an asymptotic

expansion (in the blade spacing) of the Green's function for blade rows, and

can be applied in both 2D and 3D.

In the first example, the blades are assumed to be infinitely thin (the 2

'Zero-Thickness' problem) to show the power of the "smoothing" technique:

the blade shape is solved iteratively through a set of algebriac equations. The

results compare very well with the "exact" method [4]. Then, a similar

approach is used to solve the inverse problem (in the third formulation,

outlined above) for high swirl blades having prescribed finite thickness (the

'Finite-Thickness' problem). A set of numerical examples are presented, which

in part use "partial smoothing", i.e. a practical truncation of the smoothing

series. Blades shapes with prescribed thickness (or blockage) distributions are

obtained for prescribed swirl schedules or loading distributions. To confirm

the results a 'direct' method , developed by McFarland [101, is used to

compute both the circulation and the pressure coefficients on the blade

obtained from the indirect method. The results show that the blade does in
fact produce the desired circulation and loading distribution. Moreover, the

pressure distributions on each surface agree well, at least away from the

leading and trailing edges.

Finally, a practical design procedure is presented which allows for rapid

exploration of various blade loading and thickness distributions, so as to be

* able to select favorable individual-surface pressure distributions as well.

6.

6"



Chapter 2 :Theoretical approach

2.1 Cascade geometry

CASCADE GEOMETRY

1.31

=Cl/ T(X)

X AXIS

* The cascade geometry is shown in the above figure. The flow direction

is from left to right. All lengths are non-dimensionalized to the axial chord

length.

The blade camber lines are located at:
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where i', - 0,1,2,3,

= spacing between blade cambers

f -- location of the camber line n = 0

If we define o( as

then blade cambers lie on surfaces of X = vA F. 0, ± 1 2. .....

Consider the blade located at --. 0 The blockage distribution

T (X) is defined such that:

-the blade upper surface is located at f (() (X T (X)

the blade lower surface is located at T ( ) _ 1" (X)

Physically, 2. r() can be interpreted as the axial blockage

distribution. We note that T(X) is not the blade thickness as defined in

classical aerodynamics, where the thickness is defined as the perpendicular

distance from the blade camber to the blade surface.

The far upstream flow condition is assumed to be uniform. All velocities

are non-dimensionalized to the upstream inlet x-component velocity. The inlet

flow angle is denoted by 0(. Likewise, the outlet flow angle is denoted by

.. ,4.4
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2.2 Fluid mechanics background

As mentioned in the introduction, we have chosen to model the presence

of the blade shape by distributing singularities on the blade camber. In this

section, we will derive the governing equation for the velocity field in the

2 "Zero-Thickness" problem. In chapter 4, we will extend this theory to the

"Finite-Thickness" problem.

In the case of infinitely thin blades, the presence of each blade is

modeled by arranging vortices along the blade camber. In the design problem

the swirl schedule V,(X) is given. It can be shown that the swirl schedule

is proportional to the pressure difference (i.e. the loading) accross the blade

[Appendix A].

The velocity is divided into two parts: an average velocity V(X)

and a perturbed velocity Ar (X,) , i.e

0 V () + Ad (, ) (2.2-1)

where the average velocity is here taken to be the pitch average defined by:

* -x) E 'f v
-."

and thus, by the definition of equation (2.2-1), we must have

* 4"

4 .0-0.,.,p.,

The above equation suggests that if we are to represent 4r as a series

of smooth functions, perhaps we should choose functions which possess this

. . . . .T7



zero pitch average property. In chapter 3, we will show that the "smoothing"

functions used to represent 4X possess this property.

Consider the vorticity field. Given the assumption of incompressible,

inviscid and uniform inlet condition, then by Kelvin's theorem, the vortices

must lie on the blade camber, and the flow must be irrotational everywhere

else.

It can be shown that the vorticity is related to the blade surface

C and the y-component of the pitch average velocity VOc') by [Appendix

13]:

4L (, ) 4 (.) Ev x '(,.e :

where (,c) is the "periodic delta" function [Appendix B]

Further, V- (X)

The pitch average vorticity .. is defined as:
J%11

A (2.2.-3)
_- a< x 7(a"

The vortieity -9 is defined as:

and thus, the perturbed vorticity -A. is

S= ( VG (22 x V-4)

where S(K) is the "sawtooth" function (Appendix B1.

_-I



We are now in the position to write down the governing equation for the

velocity field V . From equation (2.2-4), we can write
A,

Vx A - VS V r (- (2.2-5)

The Clebsh formulation says that, to satisfy (2.2-5), write the perturbed

velocity Ar as the sum of a potential part and a rotational part:

= V , (2.2-6)

Note that the curl of t- gives -Q- back.

If the flow is incompressible, then Vs'- 0 - V. V = V. . Thus,ooV

from equation (2.2-6),

_- (sVG)

S- s. VC- - sv G -  (2.2-7)

This gives a Poisson equation to be solved for with appropriate

boundary conditions (e.g. on the blades).

Finally, the velocity field in the cascade region is of the form:

desin [? cx,~4 S(C)VGc)](2.2-8)

In the design problem, V is given and we seek the solution for

V which satisfies all necessary boundary conditions. In chapter 3, we
present a design method for infinitely thin blades using the above theory. In

chapter 4, we present a design method for blades having finite thickness based

in part on the above approach. In this case, the gap average velocity is given

instead of the pitch average velocity, and the above theory needs to be

modified.
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Chapter 3: The 'Zero-Thickness' problem

The "Zero-Thickness" problem refers to the design problem of infinitely

thin blades. The blades are represented by a distributed bound vorticity

which is related to the y-component of the pitch average velocity by equation

(2.2-2). We seek the velocity field which must satisfy equation (2.2-8) in the

cascade region and appropriate boundary conditions. The blade camber lines

are solved iteratively using the blade boundary conditions. The flow is

assumed to be incompressible and inviscid. The upstream flow condition is

assumed to be uniform.

3.1 Flow regions

The flow field is divided into three regions (figure 1).

(1) Region 1

Region 1 is defined in the interval - cO < X < 0. In this region,

the flow is irrotational everywhere. We may write

14  (3.1-1)

where V (- o ) is the inlet flow condition.

The boundary conditions in this region are:

0q
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- far upstream, -21-

- at the leading edge, V 4 V,

(2) Region 2

Region 2 is defined in the interval 0 < X < 1. In this region, the

flow is rotational and must satisfy equation (2.2-8), i.e.

CCx) L (3.XI

where V (-() is the prescribed pitch average velocity.

The boundary conditions in this region are:

- matching conditions at the leading and trailing edges

- no flow-through conditions at the blade surfaces

(3) Region 3

Region 3 is defined in the interval 1 < X < + oO In this region,

the flow is irrotational. We may write

,(xY'06) + .j -

A0'5Y,7 (3.1-3)
0 'tr (

where V (4*o) is the outlet flow condition.

The boundary condtions in this region are:

Si ":
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- far downstream, - 22-

- at the trailing edge, 3. V

3.2 Solution of the velocity field

In this section, we present our method of solving the velocity fields in

the three regions. At the same time, we try to give reasons for our choice of

such a method.

The solution for the perturbed velocities 4ArA are assumed to be of the

form of series of smooth functions: Fourier series and "smoothing" series

[Appendix C]. In choosing these series solutions, we note that by our

definitions of V , equation (2.2-1), we must satisfy the condition of zero

pitch average for ,r . One way of satisfying this condition is to choose

functions in the series having zero pitch average. This is one of the property

of "smoothing" functions. In addition, these "smoothing" functions have other

properties which are ideal for our applications, i.e.

1. they are periodic in the y-direction. Thus, they can be used to
represent the periodicity of the velocity field in the cascade.

2. they are derivatives and integrals of one another. This is a useful
property for analysis purpose.

3. they are proportional to A , where n - 1,2,3,... This
property is desired in the case of highly-loaded blade where the
solidity is high (or A is less than 1).

4. they have amplitudes which decrease very fast with increasing
order "smoothing" functions. Because of this property, very few
terms in the smoothing series are needed to represent a smooth
function while high accuracy can still be achieved.

I"
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In the case of infinitely thin blades, we expand part of the velocity

potential in region 2 as a series of these "smoothing" functions. This is

the "smoothing" technique. It turns out that by using this technique, the

expressions for the velocity fields are very simple to compute.

Refer to equation (3.1-2), we assume the velocity potential ' in region

2 of the form

Al (3.2-1)

where () A (X)I&c) + &()()z ) + CCx)K(k ) +..

The coefficients A(j) , 6() , C.() ,... are chosen such that the blade
Aj

boundary conditions are satisfied. This form gives to have zero pitch

*l average and curl free.

The "homogeneous part" of the velocity potential is chosen so as

to satisfy = 0, to have zero pitch average, and to match the

velocities at the leading and trailing edges with those in regions 1 and 3.

The velocity field in the cascade region can then be written as

3.2.1 Smoothing series

For incompressible, continuity requires

V Cv (3.2-3)

* 4.
• - % S. .
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but - 1 (by continuity of the pitch average flow), and equation (3.2-3)

implies

~ (3.2-4)Au -- 01""4

or = _

Now, from equation (3.2-1), we can write

95 - A K[A 11 A.TK 9O
_4 ) IVA+ 7V + 2 V, 7, lC 7,<

a+ c)L7N - c +t2 2-VC, 7K -Vl J

La

To satisfy (3.2-4), we choose

V'1"- 6- 4- 27 .VwA 7c

CIV'4' (VA +±2 76Vc &c

" (3.2-5)

and the pattern for all the coefficients is apparent.

2I:

S. '--.* ',..
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3.2.2 Matching conditions

As mentioned earlier, the velocity potentials /i9h I, are used solely

to satisfy the far upstream and far downstream flow conditions, and the

matching conditions of the velocities at the leading and trailing edges. We

have chosen 5 / to satisfy Laplace equation: therefore

we assume A of the forms:

0x -- (y =) .j.I

+t - ' lx /  .'X-X JI..,IX -2 .AlI ) *

These assumed forms for A satisfy

- Laplace equation

- The far upstream and far downstream flow conditions

The periodicity condition in the y-direction of the flow field

-4-
The unknowns coefficients, , , , 3 and C , are

determined using the matching conditions of the velocities at the leading and

trailing edges:

0" .. - . . . . . .. . . .- ..

0 ., .. .... ... i i " . ,-..; ..?: ': . ii_% ,"_ ,>.i < , .' >,, '7',.- -, ,.,
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V,X (X-,=0 ) - v x ( o, )

V (X=O, ( V

(3.2-6)

Now, the velocities in the three regions are the following.

For region 1,

V 06 4
d4

For region 2,

+

4- Z(c) (A-4-S~o)(3.2-7)
4- 1 (VA -+ 9 )

+ +

For region 3,

The "sawtooth" function .S(c) has a finite jump across any constant

So lines. At the leading and trailing edges, we assume that the flow comes

and leaves smoothly (zero-incidence and Kutta conditions respectively). Thus,

from (3.2-7), we require at X =0 and X 1,

4 -7
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"* or

(3.2-8)

0-,' -

- From equation (3.2-5), by choosing a loading distribution with the condition

G-" (X = o, i) 0, we automatically satisfy the condition

S(x=o,i) = 0.
Substituting equation (3.2-7) into equation (3.2-6) using equation (3.2-8),

we can show that, in region 2

= -

(C.O -( 11 f

(3.2-9)

where " "-i

A

3.2.3 Blade boundary conditions

The blade boundary conditions are used to generate the blade camber.

By adding the blade boundary conditions together, we obtain

0- 
i

*" .. : . -.
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<V >. V>- (3.2-10)

Define

VS
vx

Then, "fo represents the meam streamline.

If we define the blade camber line as

then, we can show that equation (3.2-10) is a perfect derivative in

-- and reduces to

"f ) -I o)~S -(D)') -&'oK ( '-cf')

't:O nZI b

+ ~ ~ fsl) [L~ B~~1~ C( ... J- s [4 f(-t
EA 4-

(3.2-11) "

3.3 Iteration process for the blade camber line

We are now in the position to compute the blade shape using equation

(3.2-11). We call this equation the "camber generator". The beauty of the

9-

.- ':..-.,.- .- " . - . .''. , . * .... ... . .. .. • .... ..'-4. .. . -. 4 .- "
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S..

"smoothing" technique is that the blade shape and the velocity field can be

obtained by solving a set of algebriac equations, i.e. equations (3.2-5) and

(. 2-11):

(3.3-1)

C(×) = - + B f'* J "

*Q

Thus, we have (n+l) equations and (n+l) unknowns. The (n+l)

unknowns are: n coefficients in the smoothing series AOe) , L(3 )

Cx ... , plus the blade camber line {(n)

We choose to solve the blade camber line by an iteration process. We

expect that the blade camber line - is not very different from the mean

streamline especially in the case where the spacing A is small. Thus

0 we can use as the initial guess for f and go through the following

iteration process:

1. Compute A" , S , , ... (with the guessing value of
-.f as at the first iteration) using equations (3.3-1)

: -
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2. Update - by solving equation (3.3-2)

3. Go back to step I to update , B , C.
... with the new value of computed in step 2.
Continue this process until convergence in f- is achieved.

The whole flow field and the pressure coefficients at the blade surfaces

can be computed using equations (3.2-7) and Bernoulli's equations.

3.4 "Partial smoothing"

The proposed iteration process for the camber line in section 3.3 shows

that we can get infinite accuracy for + by keeping an infinite number of

terms in the smoothing series. From the engineering point of view, however,

we want to take the least number of terms in the smoothing series for a given

required accuracy criteria. "Partial smoothing" refers to the truncation of the

smoothing series.

In the inverse poblem, we are most interested in three quantities: the

blade camber line and the pressure coefficients at the blade upper and lower

surfaces. Since f IV , we see that has the same order of accuracy

as Similarly, since Cr ^.. V , we see that C, also has the same

order of accuracy as . We now construct a table showing the truncation

errors in --C and C as a function of the number of terms used in the

smoothing series •

" .

. -



-31-

Number of terms kept Truncation
in the smoothing series errors

3.5 Numerical method

As an example of the design problem, we write a program to compute

the blade camber line by keeping two terms in the smoothing series. In this

case, the smoothing series 4' is of the form:

(X A ()I~c
Let's investigate the order of magnitude of the truncation error in

when the above "partial smoothing" form is used. From equation

(3.2-11), we see that the truncation error in is of the order of k(o)
or [Appendix C]:

error in + @) ox)
120

Therefore, for the above example, the truncation error in is about three

orders of magnitude less than A . By keeping only two terms in

the smoothing series, we can still maintain very high accuracy (accurate to

.0011+ A4 ). Moreover, the numerical calculation is very simple. Given the

loading distribution V (x) as an analytical form, the blade camber can be

calculated through a set of algebriac equation. No numerical technique is

needed to compute derivatives or integrals.

b.2

* 6

. . ."
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The iteration process for involves calculating the following

parameters:

1. Guess and its derivatives as:

= + A~

= o(x)

fL; tff#(,c

for simplicity, we set - (c) = .(c) through out the
iteration process

2. Compute

- A/(x) t ) ""A (' 4 ( b-X)I6) 4~.

A+

(4.f )

3. Update

~~f'(x0 + r~ ~.: (GJ'.. Alf'- A-fl) -Fo

._-.
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where

4. G baktstp2adrepeat the calculations until convergence in

The convergence criteria used in the calculation is, at each location

XL

- f('b) ERROR

i.e. if the difference between the present value of -fand the previous value

of .fat all locations XL~ is less than ERROR (the convergence criteria),

* then convergence in + is achieved.

3.4 Numerical results
0

Numerical results shows that comvergence in can be achieved fast,

depending on the spacing to chord ratio A .In this section, we present a

numerical example. The results are compared with the "exact" solution (using

the Biot-Savart law) 14).

-. S - S Si. -S S. .S .l
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We have taken the case of an inlet guide vane with the following inputs:

- spacing to chord ratio 0.75

S- inlet angle 0< - 00

- outlet angle b(L - 450

n loading distribution A P x (I - x)

Calculations are made at 21 points and the convergence criteria ERROR

is 10" S

17 iterations are required for -j to converge. The computer program

output is shown in table 1. Figure 2 show the plots of the blade camber line

and the mean streamline. Note that there is reverse curvature of the blade

. near the trailing edge. This observation is also found in the results performed

by Tan, Wang, Hawthorne and McCune [41. The computational time for this

example is around 7 seconds CPU time on the Digital VAX-11 computer.

*Table 2 shows a comparason of the blade camber obtained from the

"smoothing" technique and the "exact" method. The results compare well.

* This preliminary study of the "smoothing" technique shows that it is

i iindeed a very powerful engineering tool for the design problem in terms of

computational time and accuracy (if desired).

- ' " i i .- ~ " " **v', .*,. *-. . "- , 2 . ' ' . " " . ". " "".

" .'.e ... ; _. * ' .i ... L . , ,t,,,..,,,,,.a . "t,,," ,.- " . . . -" " -- • - * " .. , . . . , -
• • "

". 
"

. " '-' " " .-- - - - - -W' "
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Chapter 4: The "Finite-Thickness" Problem

In this chapter, we will present a method to solve the inverse problem

for blades having finite thickness. The method will be similar to the one

presented in the "Zero-Thickness" problem, except that we now have to

differentiate the average flow quantities. In the case of blades having finite

thickness, we can define two average quantities:

1. The pitch average velocity which is defined as:

The pitch average velocity has no physical representation of the
flow since there is no flow in the blade. However, if we are to
model the presence of the blades by distributing singularities on
the blade camber lines, then V does exist in this sense.

2. The gap average velocity which is defined as:
:V f(-j _J

TT - r
Obviously, the gap average velocity does represent the average of
the actual flow.

In the design problem of blades having finite thickness, as mentioned in

the introduction, we choose to model the presence of the blades by distributing

vortices, sources and sinks on the blade camber lines. In our method, the two

main given quantities are: the loading distribution V and the blockage
distribution T

Given these two quantities, the gap average velocity is known. It is

defined by:

--
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- + '7()) L-(X) = ..

where VTX (x) is found using continuity, i.e.

V_ _

By distributing vortices on the blade camber lines, we have shown that

the strength of the vorticity is related to the y-component of the pitch

average velocity through equation (2.2-2). Therefore, in the "Finite-Thickness"

problem, we no longer know the strength of the vorticity. Equation (2.2-8) is

still valid in describing the flow field in region 2, however, we now choose a

different way to describe it.

4.1 Flow regions

Using the same general approach as in the "Zero-Thickness" problem, we

again divide the flow field into three regions. The velocity potentials

14 are used to satisfy the far upstream and far downstream flow

conditions, and the matching conditions of the velocities. at the leading and

trailing edges. We again make use of the "smoothing" functions to satisfy the

blade boundary conditions.

* The three flow regions are:

(1) Region 1

Region I is defined in the interval- o, < )( < 0. In this region,

the flow is irrotational everywhere. We may write

0l
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V4 - .V ('-2 = = Zo 14
'V i4 "

where 1/(-oe) is the inlet flow condition. The boundary conditions are:

- far upstream .

- at the leading edge V V

(2) Region 2

Region 2 is defined in the interval 0 < )L < 1. We choose to analyze

the flow in a region between the blade camber lines. The flow in this region

is divergence free and curl free. We may write

(4.1-2)

The boundary conditions in this region are:

- matching conditions at the leading and trailing edges

- no flow-through condition at the blade surfaces

(3) Region 3

Region 3 is defined in the interval 1 < )( < + so In this region,

the flow is irrotational. We may write

*, -:: (4.1-3) C' :

where V#(..so) is the oulet flow condition. The boundary conditions in this

region are:
0q

*": . . .'' ,. :_,..-. ... . ..*- * * -. ~ " ", • * . .- - . - "
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- far downstream 0

- at the trailing edge V = V

IV

4.2 Solution of the velocity field

Consider the flow between the two camber lines (excluding these camber

lines) located at = + and + A In this region, we can

write Las a velocity potential satisfying Laplace equation:
IL

(4.2-1)

Let's assume to be of the form

+ ~' ~ ~ (~ ~)(4-2)

where the smoothing series is assumed to be of the form

OT.5 95.rS(X) -4-

+ A 7 (x) X(K ) g r r () + (4.2-3)

and thus, can be written as

A.T r (O) + To-- (4.2-4)

Combining equation (4.2-1) (4.2-2) along with the choice -- 0,

we obtain

v , 3  - -_ V& C- + z- V . _G,.V. (4.2-5)

, .. . .. . .
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Based on the experience from the "Zero-Thickn-ss" problem, there are a

few motivations in choosing 0 of the above form:

- in the smoothing series J6 -r is the additional amount of
vorticity needed to represent the total amount of vorticity
distributed on the blade camber lines.

" 0 and ' represent some average in the potential velocity
which we have the freedom to choose at our convenience.

- 4. is chosen to satisfy the matching conditions at the leading
and trailing edges.

AT, 5"I , C. ' "'" are chosen to satisfy the blade boundary
conditions.

We are now in the position to solve for the velocity field in region 2.

Our tasks are to:

1. relate some of the unknowns in the assumed form of to the
given gap average velocity V,.

2. satisfy the Poisson equation (4.2-5)

3. satisfy the blade boundary conditions

=, T (4.2-6)

V1  " ( '"r) o- ((4.2-7) 2

4.2.1 Relation between the gap average velocity and the S
unknowns

In this subsection, we relate some of the unknowns in the velocity

potential defined in equation (4.2-4) to the gap average velocity.

By definition of the gap average velocity,

.l ' • " . ." .' • ." . . . - ., " - - • "
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fr+T-4 - (4-.C'r)V 
.I,

" Evaluating the above integral using equation (4.2-4), we obtain

A-

We now choose the coefficients in such that

+ R -s' &T -_ v,

Therefore, we require

~ (4.2-8)

and

~ ~L.r (4.2.9)

Equation (4.2-8) requires

0 V"' _.' (4.2-10)

Equation (4.2-9), a vector quantity, can be satisfied by choosing

J(T) L r) (4.2-11)
SC--) ._ 5c-r)

+ L'
and

-

-... -. ...

(A Sr f r
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Define

I4(r'C (4.2-13)
(5Ar) -5iC)

We will show later that relates to the source/sink strength.

4.2.2 Satisfaction of the Poisson equation

We now choose the coefficients in the smoothing series so that the

Poisson equation (4.2-5) can be satisfied.

From the assumed form of the smoothing series 5 , equation (4.2-3),

we can write

= Q A,/IV )

+ 56C)( + A-r7 0 A,4~ - . 8, IAC I"')

.Z.
-rVt+ o4.c V~ 7K1V + zT V+ ClI I)

(V Or + C1 V1'4 A( VC, - V + 3) 1 J7 )

* Substituting the above equation into equation (4.2-5) using equations (4.2-10)

through (4.2-12), we obtain, in scalar form

U-

6
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4 (A) Sri- 2ABf -r 7 kI' ]
The above equation is of the form

One way to satisfy the above equation is to choose

,.0

S0

= x): 0 .,C

Using the choices suggested above, we obtain
-I%

A, I',t I f' ,-+. ) + (V,., f/)

Ii

4%

.. . . . . . . . . .. . . . . . . . .' . .

-- . ::: :::::: :::::::::::: : :) : :.". - :::. ". .--V -, -. ..:'- : :.; : -::::.: .:::?::-.'.. . .. :--.. . .. -.. .-. :-: .!.%
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B... /W7DI1 = _ (:G-,.+ ')* A~.. + ,.

C.r I,<" - - Ar + . . + 2. 7,

.-Dr ,1-/ + C, C/4"

0

(4.2-14)

By choosing AT ST , C T , ... of the above forms, it turns out that

one of the blade boundary conditions is satisfied. This fact will be discussed

in section (4.2.4).

4.2.3 Matching conditions

As in the infinitely thin blade case, the velocity potential A are

. used to satisfy the matching conditions of the velocities at the leading and

trailing edges, and the far upstream and far downstream flow conditions.

Again, 9PA A are chosen to satisfy Laplace equation. A similar analysis

for as in the "Zero-Thickness" problem gives:

.. t,:o ,I ,1>

* ~ (B (+1 jnL, [~ ..f~~jJ - - s)~[A~ ( S) ., (t4 ~'(t)] cos~4 A 4+)

- -. (I)6 .

(4.2-15)

.. ... . :.-: f . . -.- "-. . ..
r-... -. . . . . . .. .•: .. .. . . ." " ' :: " " " ' -
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where 7r- 2
With the analysis done so far, we can now write down the velocity in I

region 92:

+VS [7(07, V ) ++4 ) 7

+ TO) LVAT Mx+)* + s*(,)j s1- 1-Cr ) wJ *7

(4.2-16)

Again, we require

at X -0,1

for the flow to come and leave smoothly leading and trailing edges (the zero-

incidence and the Kutta conditions respectively). Using the definition of

Ar in equation (4.2-14), the above conditions become:

/

at X - 0,1 (4.2-17)

4.2.4 Blade boundary conditions

So far, we have chosen all the coefficients in the expression for
We must now satisfy the two blade boundary conditions, i.e. equations (4.2-6),",]

and (4.2-7). It turns out that one boundary condition is automatically satisfied

We mst ow atify he wo badeboudar coditonsi~e eqatins 4.26)*
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through the choices of A , Sr , C , in equation (4.2-14) while the

other blade boundary condition is used to generate the blade camber line.

By adding and subtracting equations (4.2-6) and (4.2-7), the blade

boundary conditions become:

< ¢ ,_A, (v). vr - o 1i

Evaluating at the upper and lower sufaces of the blade and

- substituting them into the above equations, we obtain:

6s + +

+ ~(r) [9Ar1(Zo -f- -9/r74

AT A 7 V0. '7Tr

.. 2.

5 T E( r T A.1. Q - V (4.2-18)

TI r(-)7 r Cr 7. .T c

and

0

I

* S"
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L (C ) + AJI7.C.

4 T(-r) V~~ 9,~ V .- C1r /L.d>J *

(Cr (@ S)V17o(. T -~(gV 4)

+ I-(T) 947,r V . 5, 70 J (4.2-19)

By substituting the choices of AT gr r ... in equations (4.2-14)

into equation (4.2-19) and along with the identity

r - .-|

+ K, [c .+-+ .,rJ ..- ,

we can show that the blade boundary condition (4.2-19) is automatically

satisfied.

Finally, the other blade boundary condition, equation (4.2-18), is satisfied

by choosing the blade camber line f appropriately. We will call equation

. (4.2-18) the "camber generator".

Substituting the choices of the coefficients A1 , -, C -  into

the blade boundary conditions (4.2-18), we obtain

6

* 4 .+

-:,~~~~~~~~~~~. . . . .. ... ,,...•.,.......... . ......... .... ,...-....-,,,
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+ S(r)fAT v r -<~>
4/3(T).' +5(r) I(- (Cr + A,'J

+I

Kc-j j S- r. - .,fJ

4 ... (4.2-20)

This is a differential equation relating - and the coefficients A,

r , C r ,... As in the "Zero-Thickness" problem, we can reduce the

above equation into an algebriac equation for f (in the iterative sense).

Again, define

Then fe represents the mean streamline.

Also, define
Ox .,

* Then, referring to equation (4.2-20), it can be shown that

. . . ....

A......,
:.+. YT
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J(T) ..4

[7r =r T T 7 -r
L (T) CT

LLT) -~ (T) +~ S(- K

and finally _.1

-( ."r)fjT(V').T_ <AT>T% vjJ

+- ,') 7* =,.?T A: (FS6M) :.
aix

where

-Z ( + Sr) c.oSA,.

[(-,'*.,( -" [B t) c,)- '*j"/+1]J
/O v::

An

). _ *.JO)~f~)~()

- c (o - -.. ,Ip

Combining these equations together, the "camber generator" becomes

-A
.. :*
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,-

2- LI)+5r () ~

- - ( F. ,) (4.2-21)

4.3 Iteration process for the blade camber line

We choose a very similar iteration scheme used in the "Zero-Thickness"

problem. The iteration process consists of calculating the coefficients AT-,

Cdr I ... using equations (4.2-14). Then, update /and // using

equations (4.2-11) and (4.2-13). Finally, update -f using equation (4.2-21).

In quantitative forms,

1. Compute

*A M

(4.3-1)

* AT A4- ,- . 4- 1Tf A -

.L.
"(, .-. ")

0 +
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-8T . Cr f + I. C$ c'
IT1

2. Update

="/13 - _ o~o ) (4.3-2)

*~ Wf' 4. 4(') Af~x

In order to start the above iteration process, we need to know not only

an initial guess for - but also for and . A discussion of the

"physical" reprsentations of and is given in Appendix D.

4.4 Numerical method

A computer program is written to solve the inverse problem using

"partial smoothing" (refer to section 3.4). As mentioned in section 4.3, the

iteration process for -f- consists of, in "partial smopthing" forms:

1. Guess / , as:

,A-
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= Vr~c son 2,w - I)

/fT -f 0  c Ti

2. Compute

(I+f ')

-&$'+V + AT rrF
/ //

a Update

- -= (T~) .. (
Z.°

IN-4. Check for convergence. If not, go back to step 2 to recompute !
A.r S d-r  with the updated values of fi/  and

and continue this process until convergence in is
achieved.

As in the "Zero-Thickness" problem, the convergence criteria for

used during the iteration process is, at every location XL , we

require

- -k(") ~ ERROR

for convergence to succeed. q

After convergence has been achieved, we proceed to calculate the pressure

coefficients on the blade surfaces defined by:
* -i

,, . .* * : * - - " " - -. , - : - -
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CP" on set

where V is defined in equation (4.2-16), and V is defined as

~, •

Finally, in order to accelerate convergence, we pre-calculate all leading

and trailing edges variables needed in the iteration process. The flow chart

for the computer program is shown in table 4.

The above iteration process requires computing derivatives. Two methods

of computing derivatives were investigated: the Spectral method (Chebyshev

collocation) [1], [8], and the finite difference method (central difference). The
finite difference method was chosen over the Spectral method method because

it is numerically more stable.

Numerical problems were encountered in the iteration process for

Due to "partial smoothing", this method is not able to resolve the singular

point in the source/sink distribution at the leading edge. It was found that

when approximately 11 points (depending on the value of the spacing )

are used in the calculation, convergence in -f is achieved in about 10

iterations. When more than 11 points are used in the calculation, the

iteration process fails to converge. We propose to use a filter to resolve this

problem. Studies of this numerical problem and the filtering method are

discussed in Appendix E.

4

I_

. ' • . . . . ,• . . .. .. . . -.f
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4.5 Design choices

In our method, there are two main input parameters available to the

designer: The blockage distribution I(c ) and the loading distribution

-, . As an example, we use analytical forms for both T(x) and

- (c) as inputs to our numerical code.

4.5.1 Blockage distribution

In our numerical example, the b'lockage distribution T )(X is chosen to

be of the form

T(?C) (I -X)

We define the maximum blockage parameter BLOCK as

BLOCK
A5 /

We restrict ourselves to the case where T - 0 at the trailing edge.

If T"/(4) 0, then a stagnation point must exist at the trailing edge.

We do not think that this is a good model of the real flow. In the actual

low speed flow situation, the potential flow outside the boundary layer is

pushed away from the trailing edge by the presence of the wake. Therefore,

we think that the condition T (4) 0 is a better model for the real

flow giving more realistic pressure coefficients at the trailing edge. This

condition require 4L, > 1. We note that this is not the restriction of our

method. h can be any real number.

t l r ~ ~ p o o - ° -. * ,*° . ..* . . . ,-.- .
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4.5.2 Loading distribution

In our numerical example, the loading distribution is taken to be of the

form

where c- and cL can be any real numbers.

With these design choices, we will be able to study some effects of the

blockage and loading distributions on the pressure coefficients at the blade

surfaces. A more practical way would be to read in the thickness and loading

S:-• distributions at discrete points and use a numerical method to compute their

derivatives and integrals.

4.6 Numerical results

In this section, we will first discuss the limitations of our current

numerical code. Then, we will attempt to close the loop for our method using

a direct method. Finally, some results are presented.

Limitations of the current numerical code

* Our current numerical code (using the iteration scheme of section 4.4) is

limited to the following cases:

1. when the axial chord is divided into 10 intervals or less (< 11
| points), -f converges without using the filter. Otherwise, the

filter is needed for convergence in f to succeed.
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2. when the spacing to chord ratio n is of the order of 1 and
greater, f converges slow and fails to converge when the
convergence criteria ERROR is less than /0-

These problems can be resolved if many more terms in the smoothing

series (equation(4.2-3)) are kept so that the singular point at the leading edge

can be resolved. However, we decide not to do so because the idea of the

"smoothing" technique is to be able to achieve high accuracy using very few

terms in the smoothing series.

Closing the loop

Our design method is supposed to find the blade shape which is supposed

to do two specified jobs: a certain amount of circulation, and a certain

loading distribution. Given these two parameters and the blockage

distribution, our numerical code computes the corresponding blade shape and

pressure coefficients at the blade surfaces.

Does this blade profile actually do the specified jobs? In an attempt to

answer this question, we use a direct method to compute the circulation and

the pressure coefficients of the blade shape obtained from our indirect method.

If there are agreements in these results between the two methods, then we

succeed to close the loop for our design method.

We choose the direct method developed by McFarland [10]. It makes use

of the panel method. The numerical code has many options, some of which

are what we need to perform the comparason.

In general, results of the comparason show that:

-for the individual pressure coefficients, there are good agreements
between the two methods ( 5%) away from the leading and
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trailing edges (.1< ,X <.9). Near the edges, the two results differ
substantially (see example discussed below).

- for the loading (or pressure difference across the blade) distribution,
the two results agree within 5%.

- for the circulation (or comparing the oulet angle), the two results
agree well within 5%.

An example of closing the loop for our design problem is now presented

We have taken the case where:
0

- inlet angle - 0

-outlet angle o(e =45

- BLOCK - .1

- spacing A - . 5

-T .. , X(9- -t -

Table 4 and 5 show the numerical results of our indirect method using

11 points and 41 points respectively. Note that the two results agree well

within the error of the numerical scheme used to compute derivatives. Figures

3 and 4 show the corresponding blade shapes and pressure coefficients.

The pressure coefficients for the above blade shape (obtained from our

indirect method) are calculated using the direct method. Two options in the

direct method program are used:

1. Option 1 - the inlet flow condition is specified, and the program
uses the Kutta condition to determine the outlet flow condition.Iq

2. Option 2 - both the inlet and outlet flow conditions are specified
(or the circulation is specified).

I
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Table 6 shows the results obtained using option 1. The results show

that:

- the exit flow angle is 45.42, compared to the specified outlet angle
of 450.

- the loading distribution is of the specified shape (figure 5).

Table 7 shows the results obtained using option 2. The results are very

similar to those obtained using option 1.

Figure 6 shows a comparason of the pressure coefficients obtained from

the direct and indirect methods. It shows that the two results agree well

away from the leading and trailing edges. Near these edges, the pressure

coefficients obtained from the direct method show oscillations. At the trailing

edge, because our blade shape is thin, the direct method fails to fit a curve

through the control points giving negative thickness. Consequently, the Kutta

condition at the trailing edge is not satisfied, and the results near the edges

are not to be trusted.

We conclude that the blade shape obtained from our design method

succeed to do the two specified jobs. We were unable to close the loop

completely, but the individual pressure coefficients obtained from the two

methods do have the same general shape.

Comparason of the "Zero-Thickness" and "Finite-Thickness"

results in the zero blockage limit

It is found that, in the limit of T(;c) going to zero, the blade camber

lines obtained from the two theories are not the same. Although the two

theories themselves are the same in this limit, the results are not the same

0,
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because the "Zero-Thickness" problem does not predict the presence of a

stagnation point at the leading edge while the "Finite-Thickness" problem does.

Table 8 shows an example of how the camber lines obtained from the

two theories compare. Plots of these two blade camber lines are shown in

figure 7.

Effects of the spacing to chord ratio on the blade camber

Figure 8 shows the effects of the spacing to chord ratio , on the

blade camber line. As 4 increases, a smaller number of blades are

available to do the same job resulting in highly cambered blades.

Effects of the maximum blockage on the pressure coefficients

Figure 9,10,11 show the effects of increasing the parameter BLOCK (the

maximum blockage) on the pressure coefficients. We have taken the case

where:

inlet angle - O

- outlet angle -- 5

- spacing to chord 6 - ,5

T , x (I-x)

As the parameter BLOCK increases, the flow near the maximum

thickness location (in this example X .33333) accelerates due to the

Venturi effect. This effect can result in highly unfavorable pressure gradients

at both the upper and lower surfaces if the loading distribution is not chosen

* - t '<*. ... * . °- .- " 7
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properly. Figure 11 shows such a situation. A better loading

distributionshould be sought for this example to give more acceptable pressure

coefficients.

Rounded leading edge example

Figure 12 shows an example of an inlet guide vane having a rounded

leading edge. Compare with figure 10 (this is a fair comparason since all

inputs in the two cases are the same except for the blockage distribution), we

see that the effect of the rounded leading edge is to further overexpand the

fluid near the leading edge. However, we do not think the current numerical

code can resolve the rounded leading edge case accurately because of the

limitations on the size of the computational intervals.

4.7 Design procedure

The numerical code outlined in section 4.5 can be used to explore the

effects of blade loading and blockage distributions on the behavior of the

pressure coefficients at the blade surfaces. Given some design requirements,

the designer can use the above program to find the "best" blade shape using a

trial and error method.

In this section, we present an example of a design procedure using our
0

numerical code. Suppose that we wish to design inlet guide vanes which can

do the following jobs:

the flow is to be turned from o(! - 0"' to ,- 456, with a
spacing to chord ratio A - .5.

0_
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- the blockage distribution is to have an analytical shape of the form
X ( I - ( )2- with the maximum blockage parameter

BLOCK = 0.1.

We seek a loading distribution which gives "good" pressure coefficients at

the blade surfaces (in terms of minimizing flow separation). We start the trial

and error process by choosing the loading distributions which is

1. highly loaded near the leading edge (maximum at X. .33333).
Figure 13 shows the corresponding blade shape and pressure
coefficients.

2. highly loaded at midchord. Figure 14 shows the corresponding
blade shape and pressure coefficients.

3. highly loaded near the trailing edge (maximum at X. = .66666).
Figure 15 shows the corresponding blade shape and pressure
coefficients.

Comparing the results, we conclude that, for the above example, case 1

gives the "best" pressure coefficients. In general, results show that by loading

high near the leading edge, the corresponding pressure coefficients are "good".

Figure 16 shows an example of a compressor blade after going through the

above trial and error process. Figure 17 shows an example of an impulse

blade going after going through the same process.
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Chapter 5 : Conclusion

A two-dimensional design method for highly-loaded blades was presented

in this thesis. Singularities are distributed on the blade camber lines to model

the presence of the blades. The non-linear theory is based in part on the _4

Clebsh formulation. A "smoothing" technique was used to solve for the blade

boundary conditions. Numerical examples was presented using a "partial

smoothing" form of the iteration scheme for the blade camber lines.

It was found that when the blades are assumed to be infinitely thin, the

blade camber lines can be solved through an iteration process of a set of

e algebriac equations. The iteration process converges very fast (,7 seconds

CPU time on the Digital VAX-11 computer) for the typical solidity range

found in turbomachines. The results compare very well with those obtained

from an "exact" method.

When the blades are assumed to have finite thickness, the "partial

smoothing" form of the iteration scheme for the blade camber lines fails to

*resolve the singular point at the blade leading edge accurately. In order to

get high accuracy, an infinite number of terms in the smoothing series would

have to be kept, making the "smoothing" technique less attractive compare to

other techniques. A practical numerical code based on a "partial smoothing"

form of the iteration scheme for the blade camber lines was presented giving

very fast convergence solutions (-, 10 seconds CPU time on the Digital

VAX-11 computer) with satisfactory accuracy.

* 6

* 6_
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INPUT

SPACING S 2 0 75
INLET ANGLE z 0 000
OUTLET ANGLE = 45 000
NU.fWER OF POINTS = 21
PARABOLIC LOADING INPUT PROPORTIONAL TO x(-x ) r

CONVERGENCE HISTORY OF F(X)

ITER I 1 ---- ERMAX = 0 01456 AT X = 0 90000

ITER $ 2 --- E RMAX = 0 00336 AT X = 0.60000
ITER # 3 --- ERNAX a 0 00127 AT X = 0 45000
ITER : 4 -. RRL - 0.00039 AT X a 0.55000
ITER I S - RAX = 00027 AT X = 0 45000
ITEN 0 6 - ERRMAX 0 00013 AT X a 0 40000
ITER 0 7 -- ERAMAZ:X = 0.00011 AT X z 0 45000
ITEIR 8 8 ERRX z 0.00007 AT X = 0 50000
ITER 9 - ERMAX = 0.00006 AT X : 0 4500
ITER 810 - R.MAX 0.00004 AT X z 0.50000
ITER i11 - ERUX : 0 00003 AT X = 0 45000
ITE 12 . ERRAX 0.00003 AT X z 0.50000
ITER 813 - ERMAX 2 0 00002 AT I a 0.45000
ITE 114 ERRNAX a 0 00002 AT X = 0.50000
ITER 315 ----- ERRAX z 0.00001 AT X : 0.45000
ITEN #16 .-ERRXAX a 0.00001 AT X = 0.50000

XTER *7 - ERRA z 0.00001 AT X z 0.55000

X FM(X) FLOW ANGLE F(X) BLADE ANGLE

0 00000 0 00000 0 00000 0.00000 -9 10520
0 05000 0,00012 0 41538 -0 00809 -9.27549

0 10000 0 00095 1.60386 -0 01633 -6.61382

0 15000 0 00312 3 47644 -0 02324 -6 47547

0 20000 0 00720 S 93741 -0.02768 -2.95814
0 25000 0 01367 6.88065 -0.02841 2.22304

0 30000 0 02295 12.18862 -0.02380 8.79703
0 35000 0 03537 15.73517 -0.01293 15 43656
0 40000 0 05120 19 39206 0.00382 21.19087

0 45000 0 07062 23.03761 0 02583 26.04913
0 50000 0 09375 26 56504 0 05269 30 19280

0 55000 0 12062 29 88813 0.08403 33 76094

0 60000 0.15120 32.94323 0 11954 36 83603

0.65000 0 16S37 35.68779 0 15893 39 48203

0 70000 0 22295 38 09846 0 20192 41.75705

0 75000 0 26367 40 15600 0 24821 43 68834

0.80000 0 30720 41 86034 0 29744 45 27878

0 65000 0 35312 43.20571 0.34918 46 50883

0 90000 0 40095 44.18653 0.40285 47 318681
0 95000 0 45012 44.79155 0.45763 47 54620

1 00000 0 50000 45 00000 0 51216 47 42213

Table I Numerical example of 'Zero-Thickness' problem

6 °.. . . o . % * .° . L 1 "" . o. " ' " " ""° , ' , . . • "" °"" " "% % "" " "
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INPUT

SPACING S a 0 75
INLET ANGLE a 0 000

OUTLET ANGLE a 45 000
PARABOLIC LOADING INPUT PROPCRTIOIAL TO x(1-z)

EXACT SMOOTH EXACT SMOOTH
X F F BLADE ANGLE SLADE ANGLE

0 00000 0 00000 0 00000 -6.36362 -9 10520
0 05000 -0 00733 -0 00809 -8.77228 -9 27549
0 10000 -0 01498 -0 01633 -7 83866 -8 61382
0 15000 -0 02102 -0.02324 -S 31557 -6 47547
0 20000 -0 02428 -0.02768 -1.64080 -2.95814
0 25000 -0 02390 -0 02641 2 90811 2 22304 n
0 30000 -0 01923 -0 02380 8 06026 8 79703
0 35000 -0 00979 -0.01293 13.51490 15 43656
0 40000 0 00475 0 00382 18 96298 21.19087

0 45000 0 02450 0 02S83 24 13298 26 04913
0 50000 0 04947 0 05269 20 83133 30 19280

0 55000 0 07947 0 08403 32 95549 33 76094
0 60000 0 11423 0 11954 36 48344 36 83603
0 65000 0 15338 0 15893 39 44676 39 48203
0 70000 0 19650 0 20192 41 90393 41 75705
0 75000 0 24316 0 24821 43 91742 43 68834
0 80000 0 29288 0 29744 45 53462 45.27878
0 85000 0 34517 0 34918 46 77274 46 50883

0 90000 0 39940 0 40285 47 59450 47 31681
0 95000 0 45473 0 45763 47 84251 47 54620
1 00000 0 50954 0 51216 45 68512 47 42213

T .1 .

Table 2 " Comarason of 'amoothinK' and 'exact' results" !A

* .~ .- - ,.
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Inputs

Compute
Edge

Variables

Guess

I Compute

AB
Tr T

Ipdat

If

I No

* Table 3 Flow chart for the 'f~nt-hcns rbs
converges

Yes
Comut

C

STOP. S.

Tal 3 Flo chr fo th 'Finite-Thickness' pro.5 .5 .



-66-

INPUT PARAI4ETERS

0,X BLCCKAGE = 0 10000

FACING 0 SOOCO
INLET A11GLE = 0 00000
OUTLET ANGLE = 45 0OOCO

MISER OF POINTS I J = 11
!1AX NU!.BER OF ITERATIONS ALLCD =20.
U-AX ERRCR IN FX) ALLOWED EDRLAX 2 0.000001

FILTR-ING OPTION = 0

BLOCKAGE AND LOADING PARAMETERS

A= 1 00
B= 2 00
C= 0 50
D = 1 00

ITERATION 6 1 ------ ERRUAX =0.00376 AT I z 0 10000

ITERATION 1 2 ---- ERRUAX 20 00048 AT I - 0 10000
4ITERATION 8 3 ---- ERRMAX =0 00013 AT I a 0 10000
ITERATION 4 4----ERRLAX -0 00002 AT X - 0 10000
ITERATION 0 5 ---- ERRMAX =0.00000 AT I a 0 10000
ITERATION 9 6 ---- ERRMAX 20.00000 AT X = 0 10000

X LOAD (M T() FM(C) F(X) Cp. Cp-

0 00000 0 00000 0 00000 0 00000 0.00000 1 00000 1 00000
0 10000 1 09742 0 01367 0 00259 -0 01371 0 21609 -0 83569

0 20000 1 37954 0 02160 0 01335 -0 00982 0.32123 -1 00828
0 30000 1 47829 0 02481 0 03600 0 01488 0 35421 -0 91697
0 4000C 1 46323 0 02430 0 07164 0 05381 0 30674 -0'86721
0 50000 1 36328 0 02109 0 12073 0 10615 0 21504 -0 85185

0 60300 1 19472 0 01620 0 18316 0 17181 0 09294 -0 83185
0 70000 0 96783 0 01063 0 25817 0 24986 -0 05235 -0 80053
0 80300 0 68977 0 00540 0 34412 0 33873 -0 21089 -0 74507 5
0 90000 0 36581 0 00152 0.43835 0 4359S -0 37577 -0 66037
1 00000 0 00000 0 00000 0 53713 0 53751 -0 55867 -0 55867

I
4 2

Table 4 Numerical example of 'Finite-Thickness' problem
(without filter) S

. . .. . . . . .

. .-...
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INPUT PARAMETERS

MAX. BLOCKAGE - 0. 1OO6
SPACING - 0.50000
INLET ANGLE * 0.00000
OUTLET ANGLE • 45.00000

NUMBER OF POINTS IJK - 41
MA, NUMBER OF ITERATIONS ALLOIUED • 10
MAX. ERROR IN FfX) ALLOIUED ERRMAX , 0.000100
FILTERING OPTION - I

BLOCKAGE AND LOADING PARAMETERS
A 1.00
3. 2.00

C 0 9.50
D" 1.00

ITERATION 0 I -- ERRMAX v0.01190 AT X a 0.02-50
ITERATION 0 2 ---- ERRAAX -0.00676 AT X * 0.02500
ITERATION 0 3 ---- ERRMAX -0.00388 AT X - 0.02500
ITERATION 0 4 ---- ERRMAX -0.00223 AT X * 0.02500
ITERATION 0 5 ---- ERRMAX =0.00127 AT X * 0.02500
ITERATION 0 6 ---- ERRMAX -0.00074 AT X - 0.02500
ITERATION o 7 ---- ERRMAX 0.00041 AT X - 0.02500
ITERATION 0 8 ---- ERRMAX -0.00024 AT X - 0.02500
ITERATION 0 9 -- ERRMAX "0.0013 AT X - 0.0250e
ITERATION 0 10 ---- ERRMAX -0.00109 AT X - 0.0250

X LOAD(X) T(X) FM IX) F(X) Cp* Cp-

9.00000 0.00000 0.00000 0.00000 .00000 .0000 . 00000
0.02500 0.58000 0.00401 0.00009 -0.00398 0.50002 0.24987
0.05000 0.79921 0.00761 0.00048 -0.00772 0. 00085 -0.613R9
0.07500 0.95307 0.01083 0.00133 -0.01066 0.03782 -0.66715
0. 1000 1.07077 0.01367 0.00273 -0.01245 0.08002 -0.71882
0.12500 1.16390 0.01615 0.0474 -0.01297 0.13205 -0.75553
0. 1500 1.23856 0.0182n 6.00741 -O.0L217 0.17935 -0.79703
0.17500 1.29845 0.02010 0.01076 -0.01010 0.22816 -0.83309
0.20000 1.34604 0.02160 0.01484 -0.00680 0.27418 -0.86304
0.22500 1.38307 0.02280 0.01966 -0.00234 0.31633 -0.88633
0. 25 1.41086 0.02373 0.02523 0.00322 0.34597 -0.90261
0. 27500 1.43040 0.02439 0.03159 0.00982 0.35419 -0.91166
0.30000 1.44248 0.02481 0.03873 0.01742 0.34936 -0.91355
0.32500 1.44776 0.02499 0.04667 0.02599 0.32412 -0.908.80
0.35000 1.44677 0.02495 0.05543 0.03550 0. 3090) 1 -0. t9827
0.37500 .43995 0.02472 0.06501 0.04592 0.30709 -0.88303
0.40000 1.42769 0.02430 0.07541 0.05724 0.29402 -0.86644
0.42500 1.41031 0.02371 6.08664 0. 06943 0. 27274 -0.85046
0.45000 l.3S810 0.02297 0.09870 0.09249 0.24K09 -0.84213
0.47500 1.36131 0.02209 O.11159 0.09639 0.22259 -0.93885
0.50000 1.33017 0.02109 0.12531 0.11112 0.19656 -0.83721
0.52500 1.23487 0.01999 0.13986 0.12667 0.16941 -0.83899
0.55000 1.25558 0.01879 8.15523 0.14303 0.14059 -0.S3399
0.57500 1.21248 0.01753 0. 17141 0.160 6 0. 10993 -0.82S97
0.600 .16570 0.01620 0.18838 0.27804 0.07753 -0.82351
0.62500 1.11538 0.01483 0.20613 0.19667 0.04360 -0.81760
0.654 0 1.06164 0.01344 0.22465 0.2!600 0.0)838 -0.82086
0.67500 1.iw53 U k- a.2u3 0.24390 0.23602 -0.02793 -0.80297
0.70000 ,).IJ4433 0.1063 0.26387 0.25670 -0.06516 -0.79369
0.72500 0. S9, 4.I.0iS 0 2H452 0.27800 -0.10315 -0.78-5
0.75000 0.1.156 11.4,1791 0.30582 0.29990 -0.14174 -0.77030
0.77510 i.745'2 I 00662 0.32773 0.32237 -0. 1800o -0.75593
0. Wis,, u.b7J492 U. 0e540 0.35021 0.34537 -0.22020 -0.73968
0.82500 0.59*)2 0.00426 0.37320 O.3688 -0.25988 -0.72153
0.85000 0.52030 0.00323 0.39667 0.39287 -0.29990 -0.70253
0.87500 0.43991 0. 00231 0.42055 0.41729 -0. 34(103 -0.67980
0.90400 0.35692 0.00152 0...478 0.44213 -0.381)69 -0.65653
0.92500 0.27138 0.00088 0.46931 0.46732 -0.42202 -0.63202
0.9500 O.28335 0.00040 0.49406 0.49282 -0.46446 -0.60669
0.97500 0.09287 0.00020 0.51896 0.51855 -0.50899 -0.58137
1. 000)O 0.00000 0. 00000 0.54394 0.54434 -0.55891 -0.5"89

Table 5 Numerical example of 'Finite-Thickness' problem
(with filter)

4
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CONTROL CONTROL POINT COORDINATE SOURCE NORNAL TANGENTIAL PRESSLREPOINT X Y DL4SITY VELOCITY VELOCITY COEFFICIENT

I 0.967487 8.531406 -0.327305 0. &IkWe -1.003151 -0.006311
2 0.962497 0.505435 -0.329598 0.(NNX%81 -1.579879 - 1. 496018
3 0.937506 0.479427 -0.328757 0.011-wo. -1. 173611 -0.377364
4 0.912511 0.453515 -0.326162 0.OOIMIII -1.317,3 -0. 736-67
5 0.887515 0.427783 -0.322227 0.,L

8
8X1' -1.304845 -0.702619

6 0.862519 0.402295 -0.317136 0. OJX)00 -1.312181 -0.72!8211
7 0.837522 0.37"107 -0.310993 0. WOW0 -1.316798 -0.733958
8 0.812525 0.352270 -0. 303809 0.N 00 - 1.3214121 -0.7405%
9 0.787528 0.327831 -0.295573 O.018ktl0 -1.324733 -0.7S-1919

to 0.762531 0.303837 -0.2146240 0.0(4k40 - 1. 32.:2!8A# -0.763659
II 0.737534 e.28:335 -0.275760 0. 1kN91 -1.3310985 -0. 77! -15"0
12 0.712537 0.257369 -0."64055 0.0"100 -l.3337oj2 -0). 778762
13 0.687539 0.234986 -0.25I0S3 0. 0xWWe1 -1.336256 -0.785580
14 8.662542 0.213232 -0.2366.4 S. "% 00 -1.338725 -0.792194-
I5 0.637544 0.192150 -0.220876 0.004W1o -1.341169 --0.798733
16 0.612547 0.171783 -0.203552 O."NO8hO -1.343636 -0.80535%
17 0.587549 0.152174 -0. 184650 0. O,'w M)0 -1.346141 -0.0120"96
18 0.562550 0.133362 -0.164110 0.0os8m -1.348701 -0.8 It102
19 0.537552 0.115385 -0.141866 0.00o000 -1.351329 -0.8:6091
20 0.512553 0.098279 -0.117855 0. 0k0.14 0 -1. 3542., -0.83332221 0.497553 0.082079 -0.092026 0.0 O0000)0 -1.356702 -0.8-W39
22 0.462554 0. 066815 -0.064315 0. 0000 W0 -1.359402 -0.847975
23 0.437553 0.02520 -0.03463 0.00.JMO -i.3621'56 -0.855198
24 0.412553 0.039225 -0.003003 0. 0W18* -1.364.-) t -0. 462137
25 0.387552 0.026961 0.030739 O.(0xxW40 -t.366939 -3. Nfib;523
26 0.362550 0.015759 0.066643 0. O0AN0 -1.36h936 -0.873986
27 0.337548 0.005653 0.104813 O.0(Xk100 -1. 37391 -0. 877972
28 0.312545 -0.003320 0.145361 0. 9W -1.371013 -0.87-651
29 0.287541 -0.011118 0.188412 0. L"8i0 -1. 370i336 -0.877822
30 0.26 2536 -0.017693 0.23U0)96 0.0000, -1.367744 -0.870723
31 0.237530 -0.022930 0.282508 0.0tWo,0 -1.362-293 -0. 855842
32 0.212523 -0.026944 0.333655 0.01%WM -1.352654 -0. 826A74
33 O.187514 -0.029482 0.3S7351 0.O00.WO1 - 1.337U)4 -0.78758 0
34 0.162502 -0.030524 0.443059 0. 00000 -1.312949 -0.723835 -
35 0.137490 -0.029992 0.499690 0. 00LW0 -1.277559 -0.632158
36 0.112476 -0.027s23 0.555407 O.0.810o0 -l.22"6s8 -0.507219
37 0.087465 -0.023995 0.607521 0. k930 -1.159363 -0.34412338 0.062461 -0.018570 0.f65256,3 0.(X%14%v - 1.o7358.2 -0.152578
39 0.03747e -0.011764 0.68556.4 O.1XW880 -0.9 41-44J8 0.175357
40 0.0149,5 -0. 0)466 0. 7(X)727 0.01883 -0.993459 0.13040
41 0 002499 -0.6W1N28 0.709200 0. IW W -0..01021 0.95959 I42 0.UO250 0. 000.1 1 -0.4-48950 8.(18w8) O. 587520 0.654K21
43 0.01SI%*1 0. 8J41 -0.45183 0.0 w8884 0.925071 0.144244
44 0.03750 -0.4047 47 -0.457399 0. 00t % .,o 0.765250 0.414393
45 0.0625S1 -0.004%139 -0.442719 0. 0(8%) 0.771431 0.4044895
46 0.087505 8. 01.58 -0.414927 O.t188810 0.75qr96 0.42w923
47 0.112510 0.i)i2s) 1 -4).3811)6 0.OPA0 4,745731 0.443N85
48 0. 137514 0.K14.531 -0..34.4" 0.64" 8) 0 7416"J2 0.449,93
49 0. 162518 0.007946 -0.310129 0.01Mkoll 0.742463 0.444749
S O.187521 0.012296 -0.276276 0.4*881. 0.746.,54 0.4422142

51 0.212523 0.017535 -0.244315 O."1w81mO 0. 753821 0.431754
52 0.237525 0.023614 -0.214207 0.018q883 0.76253 0.41h467
53 0.262526 6.030492 -0.185719 0. 00o0 8.772603 0. 40384
.4 0.287527 0.038138 -0.158562 0. "04" 0.783536 0.3N607
55 0.312529 0.046526 -0. 132463 0.104%4*0 0.795173 0.367700
56 0.33753e 0.055641 -0. 107195 0.018WK) 0.807401 @._W4104
57 0.362531 0.065.172 -0.082593 0.06148, 0.820164 0.327331
58 0.387533 0.076015 -0. 058547 0. 0.8)00 0.833439 0.305379
59 0.412534 0.1187267 -0.034989 0. 048%)0 0.847222 0.282214
60 0.437536 0.0992i8 -0.011901 e.Ou w Jo.) 0.861516 0.257791
61 0.462537 0. 1 1 1499 0.010708 0.0. 010 0.876319 0.232082
62 0.487538 0. 125281 0.032818 0. .C4.1.4 0.891593 0.205062
63 0.512539 0.139374 8.054374 0. w40 0.947342 0.176731
64 0.537540 0.154177 0.075340 O.0AW000 0.923510 0.1471-29
65 0.5625-10 0.169688 0.095655 0.0 01.84 0.94%w51 0.!16304
66 0.587541 0.185903 0.115273 0.0.1.88,0 0.956'90 0.084361
67 0.6125.41 0.:02814 0. 134157 0.(8,0W0 0.9739-47 0.051427
68 0.637541 0.2204t5 0.152273 0..88,00 0.991135 0.017654
69 0.662540 0.238695 0.169601 0. INX)1to 1.00,4358 -0.016786
70 0.687548 0.257642 0.186(36 0. 01Nw0 1.025518 -0.0516F6
71 0.712539 0.2'77243 0.201484 0.48888) 1.042525 -0.08685A72 0.737539 0. 274 86 0.216%8 e.t1w %0 1.059300 -0. 1221 16
73 0.762538 0.318356 0.231109 0. 0 1400 1.0757?86 -0.157315
74 0.87537 0.339s38 0.244-641 0.1OA881.83 1.091943 -0.192339
75 0.s12536 0.361919 0.257491 0. CNIN.4" 1.107753 -0.2271 1876 0.837535 0.384581 0.269679 O.01W8)10 1.123-9 -0.261779
77 0.862534 0.407811 0.281197 00.111%4w) . 138090 -0.295250
78 0.887533 0.431589 0.292010 0. 01%%WA) 1.!56313 -0.337059
79 0.912531 0.455891 0.302015 0.0 w8 %WA 1.150741 -0.324205
80 0.937527 0.481084 0.311029 0. 88018) 1.227f.92 -0.507203
81 0. 962521 .5"5916 0.31%.35 00..841.40 1.189794 -0.415610
82 0.987512 0.531485 0.323538 8.00t18%) 1.242529 -0.543878

UNIORN ERROR iEPS) - -0.747'754E-.0

CL. -0. 90*8828
CD * 0.2866034E-02
CIRrULATION - -0.4525191

POTENTIAL FLW VELOCITY DIAGRAM
UPSTREAM VELOCITY * 4.89175 AT 8.00004 DEGREE
ONSET VEIOCITY - 1.00.0 %T .8.90546 DEGREES
DOWNSrMEAN VELOCITY * 1.270S6 AT 45.42360 DEGRE

o NOTE: AlL VELOCITY QUANITIES ARE SCALED BY THE ONSET VELOCITY

Table 6 Results from direct method

(inlet condition specified)
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CONTROLI CONTROL. POINT CORDINATE S,1UR'E NOMNI. TANGFNTIAL PROMRE
POINT I*:DENSITY ti'Ll-M Irv VELOCITY LCUFFH1CIENT

1 0 96R7487 0. 511 41w, -0.33"12 0 0III110o -1011293 -0.022692
2 0. 4,J47 0.51)5435 -0.33Si92 IIM"'4 1. 5Z%,!96 -1.312211
3 0..3754 7-0.47247 -0.3343r1 U.44419114Its I. I N447 -0.39264
4 0.151 0.45315 -01.331771 Is k.4lh-44I -. 31 .A)I18 -0. 7115.42
5 0.4M7515 03.4277%3 -0.3Z74-45 Is. IL"11

4  
-4. 97752 -41.6!4 1,51

6 0, hFZ5 19 0. .4279 -0326 ? --)S 0 I KHMA - 1 . -17134I1 -0.7,16631
7 It. 437522 0.3771,)7 -0 -3F.67.34 1). 4X111441 -1.312 42:? -0.7224151
8 0.412525 0.352270) -) 31.1-163 i).4w-.k0 -1.3171)%)7 -0,71.x

S s .7'47524 0.32-431 -0.34)1243 14 t49'kw49) -1 .322764 -0.74)74
IA 0l.76.2531 0.34ON'37 -).2Z911927 U "It"MI -1. 327(s.5 -Q.7r4153
11 10.717534 0.244''335 -41, -N 41r,5 U.49110 -1 .331 r)45 -0.771416
12 0.71:537 O.Zs71r,9 -0 2f .97mo 0) INKK -1.3344-44 -0. 7SW074)
13 0 17,87539 0.234*).6 -0 1) 41149.494) -1.337655 -0 7,%')3122
14 0.A625-42 0.213:32 -0.24Z451 .1It1R494444 - 1.341W,66 -0.797387 -
is 0.637S44 0). 192 1541 -4).2c,6 4) 411444) -1.343548 -0. k-)5123
16 0.612547 0. 171743 -I4.Z' .5 :1v 0,, I.4IN9494"4) - I. 36364 -0.91:696
17 1). 57549 0. 152174 -1). 1.44i 0).0i4".41 -1.349143 -0.92%0187
8m 0. I6A,; O k 0 3'r2 -44. : F,'Jj,.4 1.44.4 -. 35 1) 19 -0.927685
9 0.S537;5:! 0.. 153445 -44.4714 n) I4~I -. 3547 its -0.983239

20 0.511553 1)4929 -0. 2 3 7;3 Is0.."%) -1.357511 -O.844437
21 . 4X7553 0. 4x-4178 -4) 04371411 1) .4111494) - 4.36111) -- ) 85IA443

22 0.462554 0 4 415 -1),:17--242 0) 44.4.149 I .3631 INS -0. "S4'4948
23 0.437SS3 0.i45-0 I48.,491 1.,44w9 -3651")1 -0.965413
24 0.412553 4). 1) ,j :s -4).4 10JI444 0. tit It 4 a94 -1.3644391 -0.872495
25 00.38755 , r, it, 1 0, 412444S.M .I.x I -. 371)762 -0. 87,49130
26 Is 362.55') 0.04575S9 04 Wk17 1 4 44.41494494 -1.372742 -0.SN84530
27 0).33754R 0.601;C.53 0 ~42 044119114) -1.374249 -0.14s4560
284 0 3125-4S -0.0)'1320 41 13'.471 0.'1111"4) -I1.374,,r3 -0. 141.247
29 k).487541 -)001 1 118 0. '42574 0 11NN-K49) -348 0848
30) 4). Z2516 -0. U I7r.'33 0.24143 15 049444 - 1.37 1565 -0 s841191
31 0.237514) -0.-022496k 0. Z'6'. Q 0 IN4I11444) -1. 366069 -0.6614
32 0.21:523 -0.24):,44 1) 3:141-1 0.411101410 -1.356361) -0.839713
33 0.187514 -0.0:9442 0.-34 44SAS 0.1411MMM - I. 34461 -0.79722 9
34 0. 162412 -0. 031).524 0.437123 0) 'I49Mw4 - 1.3 16-AP9 -0.732933
35 0 13 j7414. -0.029) 0 -.414534 0.494"9N.Kit) -I . :S00822 -0.6411505
36 0.112476 -4) U2?423 0.51"W-155 0.1MOIN114) -1I.23iW687 -0. 514590
37 0. I447465 -0. 023)5 0.612749 0 '"k"4)0 -1. 162IMM8 -0. 34A424 3436 0.406 246;1 -0.01*iS70 0 644.44. 1).0"4K4) -J.075764 -0.157269
39 01137474) -0.0111764 0 681224 04711111 -0.19419I96 0.073363
41) 04448 -0.09)4*,r 0. (,'A.473 01)N 98m4)0 -0.)95337 0. 411J30)
41 4).44902499 -0.60,"N. zS 0. 7-4,.Y7 0.09I1I'4O -0. 192771 0.96ZS39
42 1)449425io9 0.44494911 1 -0.443632 0.4hM1149) 0 511141612 0.645973
43 0LI 015449111 O.Otti444I -0.446,573 0.1)N"4111 0 .'J29794 0. 1354#3
4-4 0.03 7 54 n0 -044.44447 -0.4521(W6 0. 41 N t N9) 0. 76"674 0.409146)
45 0.4o6.254 P -0.06"4%439 -0.437342 0.u4."1144 0.774482 0.441178
436 0.o)1.7 5.45s 0 047k)548 -6.'419S12 0., ANNN4 0. '58529 0.424634
47 0.112510) 0.411)2141 -0.375695 0. 04 % is o 0.748417 0.439872
48 0. 137514 0.1014531 -0.33)914w 0.01%4N9 10 0.744294 0. 44C042
49 0.1625iq 0. W17946 -0. 31).74 0. ILMI " W0 0.744995 e.444982
50 011875ZI 0.01=296 -0-.,4560 0). I NAM 0.749350 0.438474
sI 0.212523 0.007S35 -0. 23'4548 0.1WN44810 0.569 0. 42"14
52 0 237525 0.10231t;14 -41 42Is319 0.4)4494940 07.45 14OS .414A96
53 0.2625216 0 .41304492 -0, 1791,7" 0.1%4949498 4. 7754171 U.391"265
5-4 0.:47527 0 043"13" -it. I152643 041.44P9444 0.71.60)10 0.31,2P49
55 0.312529 0. 046526 -4). 1265" 1 0.149494949q8) ). 79761541 0.3A3741
56 0) 337530 0 USS6;4I -41. 1041246 0 44.1191111 0). St-J9.I4 I 4 I 440

57 0.362531 0.4165472 -. 1 07F671 43.471.494) ..42:.8s 0.3:3190
58 0.387533 0.1076015 -11.1152615 1) O1)4914 4).835983J 0.3041 133
59 e.412534 0 0.87267 -0.'421NI 0.01""g.4) 0.8419793 0.2774.5?
60 0.437536 0. 1",1229 -04(.195959 0). 84944911 0 4464117 0.-25 33493
61 0.462'537 0. 111499 0 .1) 166 4. 0.44ON494,1) 0 87N.945 0.:27.456
62 0.497539 0.125Z211 0.0344756 0o4.g149 0. 8942-,C 0.24114wt'4
63 0.512539 0. 139374 4).406s134o6 0.49990 .4 91411456 0.171799
64 0.5375-40 0. 154177 1) .41981262 k0.IN9M.M9w") 0. 9:67,)7 0. 142(124
65 0.562540 0.161.6,48 U. 101567 4. NN w44 0.942,160 0. 1111114
66 8.587541 0. 185143 0. 1,1172 0. Mf 9I 410 0.959754 0.0744872
67 0 612541 0.'24214 0. 1400442 0.18494498) 01. 97067170 0.0-457Z4
6)1 0.637541 0.220415 0. 15SR14.31 048491149)1 Is.49.14W25 0.1)1171
69 0.662540 0.2138645s 0. 175452 0.11108) 1.11421 -0.022972
70 0.687540 0.2576412 0. 191970) 0494448 1.44244664 -0.4115-149
71 0.712539 0.277243 0.2407699 0.4)ON%.1)o 1.045767 -0. u936 29
72 0.737539 0.29746 U.222664 0.0111It1w1)0 1.062656 -0.129239
73 0. 762530 0.318356 0.2364485 4) 1,111"01M) I.1092q 1 -4. 16.4.19
74 0.797537 0.3398108 0,25443,37 0.181149494 I 1.095612 -0.2411,367
75 0.812536 0. 361940 1 0.:63226 0.484 9440 1.111651 -0.2357681
76 0.837535 0 3845q1 0.275394 04IN.M1-1NA) 1. 12*747 -0.271227
77 0 662534 0. 40741 1 1.2446892 0.I. 1w49 1.142781 -0. 3115949
78 0 887533 0.4345N9 0.297607 0. INN IN1M14) 1.161149 -0.348Z66
79 0.912531 0.4554494 0. 3W4673 9.4)1 144940 1.159661 -0. 344N 14
80 0.937527 e. 48416.84. 0.316670) 0) 4A)0 I1.2299422 -0.510496 '
S1 0.962521 0.5o',916 0.324Z60 6.484911N4P0 1-201049 0421

02 0.6712 0.531485 0.329153 0.4)19111) 1.:67-124 -0.60)6364

UNIFORM ERROR EPS) - e 2 -

CD 0 0256.1*PE-02 -

C IRCULATIO 104 -u.4472i36

POTFNTIAL FLOW VELOCITY DI AGRAM
LPS-TRFAA VElOCITY * 0.89443 AT 0) 18111) DFGR~t:S
ONSE~T VEI.OCITY - 1.011)00 AT 26. 565415 14GRtS
DOUNSTREA11 VELOCITY - 1.26491 AT 45.44.8)4) I)LIRF.ES

4 NOTE: ALL VELOCITY QUANITItS ARE SCALED BY THlE ONSET VELOCITY

Table 7 Results from direct method
(circulation specified)
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INPUT

BLOCK = 0 00001

SPACING S = 0.15

INLET ANGLE x 0 000
OUTLET ANGLE a 45.000
PARABOLIC LOADING INPUT PROPORTIONAL TO x(1-x)

F(X) MCI)
finite zero

thickness thickness
result remult

0.00000 0 00000 0.00000
0.05000 -0,00849 -000809
0 10000 -0.01803 -0.01633
0.15000 -0.02580 -0.02324

0 20000 -0.03334 -0.02760
0.25000 -0.03620 -0.02841
0,30000 -0,03347 -0.02380
0.35000 -0.02376 -0.01293
0.40000 -0.00761 0.00382
0 45000 0.01410 0.02183
0 50000 0 04083 0 05269
0.55000 0 07215 0.08403
0 60000 0 10770 0 11951
0 65000 0 14715 0,15893
0 70000 0 19020 0.20192
0 75000 0 23654 0.24821
0 80000 0.2e581 0.29744
0 85000 0 33757 0 34918
a 90000 0 39123 0 40285
0+95000 0.44600 0.45763
1 00000 0 50053 051216 -

-.1

Table 8 Comparason of 'Zero-Thickness' and 'Finite-Thickness'

results in the zero blockage limit

I
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0.6

s =0.75
0.5 =00

LLJ OL450

~0.3
z

~ 0 .2mean streamline

1 0.1

L0.0 blade camber

-0. 1
0.0 0.2 0.4 0.6 0.8 1.0

AXIAL LOCATION X

*Figure 2 Blade camber and mean streamline
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0.6 -- 7I

0.5
11 points
no f ilter

U 0.4I
~0.3

LUL

0.1

0.0

4 -0.1
0.0 0.2 0.4 0.6 0.8 1.0

AXIAL LOCATION X

0.5
41 points

- with filter

LLJ

0.3

4

0.0 0.A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

AXIAL LOCAl ION X

Figure 3 Blade shapes obtained from

'Snoothing' technique
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1.0 T

11 points
C) no filter

~0.0
LU.

(:J

S-0.5

LU

o-1.0

-1.5
0.0 0.2 0.4 0.6 0.8 1.0

AXIAL LOCATION X
1.0 I

cL0.5 41 points

z
LUJ

~0.0
LA-
LUJ

~ 0.5

LIj

-1.5 I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

AXIAL LOCATION X

Figure 4 Pressure coefficients obtained from
'Smoothing' technique
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J 05 inlet condition specified

~0.0

CD)

S-0.5

o- -1.0

-1.5
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

AXIAL LOC. X

0.5 circulation specified

z3

1-j0.0

C-)

S-0.5

-- 1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

AXIAL LOC. X
Figure 5 Pressure coefficients obtained from

direct method
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o DIRECT METHOD

oINVERSE METHOD
cP

0.0

-0.5

3

S 0.5

AP \X (I-X)2

BLOC^.K C .1

Figure 6 Comparison of Cp's from direct and inverse methods
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0..°

s =0.75
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>~0.4
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~' 0.2 'Zero-Thickness' result
Lii
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Cs-. 0.1
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0.0BLOCK 0.0000i

i.0.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

AXIAL LOCATION X

×4

II

Figure 7 coaparason of 'Zero-Thickness' and 'Finite-Thickness'
results in the zero blockage lisit
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0.5 -

04 BLOCK=.1
0 0(1 = 00

=450 S
XJ 0.1 PX1X

LU-

~0.2

-0.1

-j 0.0 0. 0. 0. 0. 0. 0. 0. 08 0.9 .

SS

Figure 8 Effects of spacing to chord ratio
on the blade canbers
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0.5 I

0.4 BLOCK =0.001J

Lj 0.3

Uj0.2

0.0

-0. 1
0.0 0.2 0.4 0.6 0.8 1.0

AXIAL LOCATION X

1.0

c" 0.5

z
wL

~0.0
LU-

CD,

w-0.5

Q.. -1.0

-1.5 I

0.0 0.2 0.4 0.6 0.8 1.0

Figure 9 Effects of aaxisus blockage on Cp's
(BLOCK =0.001)
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0.5 I

04 BLOCK =0.14

0.3

0.2 1
cn0.1 -

0.0

-0.1J
0.0 0.2 0.4 0.6 0.8 1.0

AXIAL LOCATION X
1.0

~0.5

20.0

Lj -0.5 -

LU-

S-i.0

-1.5 I

0.0 0.2 0.1- 0.6 0.8 1.0

AXIAL LOCATION X

Figure 10 Effects of maximis blockage on Cp's
(BLOCK =0.1)
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0.4 BLOCK =0.25J

0.3

0.2
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-0.1 
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0.0 0.2 0.4 0.6 0.8 1.0

AXIAL LOCATION X
1.0 I

0O.5

z

LLJ

4 L)
S-0.5

(A1

S-1.0

-1.5
0.0 0.2 0.4 0.6 0.8 1.0

AXIAL LOCATION X

Figure 11 Effects of aaxiu blockage on Cp's

(BLOCK = 025)
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0.5 1

a=0.5

0.4 BLOCK -0.1
ot = 00

L.i 0.3 T -x.(_)

0.2
-IJ

co 0.1

0.0

.4_____________________________________0.1_______

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

AXIAL LOCATION X

1.0

Ca0.5

~0.0

U-

4 C-,

Lu -0.5

:D

LU

-1.5
0.0 0.2 0.4 0.6 0.8 1.0

AXIAL LOCATION X

Figure 12 .Rounded leading edge inlet guide vanse
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1.0
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~0.0
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Figure 13 Effects of loading distribution on Cp's

(aaxisus loading at x 1/3)
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Figure 14 Effects of loading distribution on Cp's
(maximum loading at x =112)
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Q 1.0
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Figure 15 Effectsa of loading distribution on Cp's

(maximum loading at x =2/3)
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Figure 17 Impulse blade
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Appendix A : The Relationship between the Swirl Schedule and
the Pressure Difference across the Blade

Consider the cascade geometry shown below

Under the assumption of incompressible, inviscid and uniform inlet flow

condition, Bernoulli's equation is valid everywhere. We can write:

P~ P 4-~V

* Therefore

AP v P*- P - (A-1)

We can do the following approximation:

V V. VT.
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To estimate / ) we consider the circulation along the closed

path (D- - ( shown in the figure. From Kelvin's theorem, we can write

0 +. (A-2)

Now, - T

P-f v (x+ , - (4" ZT)V(X4X)

+4

P= -e (4 1. T

I r

VK V+ t x
where

= ~ "  - X I~x . (-'r) _ ~

Substitute the above relations into (A-2), we obtain

V- &i 2X ( V (X + AX) - V,

and thus, in the limit of A( -- 0

6.. v-_V ) ,.

Therefore, equation (A-i) reduces to

and we conclude that the pressure difference across the blade is directly--/ -./

proportional to the swirl schedule V . We will call V the swirl

schedule or the loading distribution.

*.i ', - . " "*. • .* - i .. -"-. ,+.--.. .- . .- .'. -.. . * , - . .• • -. ' - -.. • -.
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*Appendix B : The Bound Vorticity

In this appendix, we will show the relationship between the bound

vorticity (vortices distributed on the blade camber lines to model their
presence) and the swirl schedule (or the gradient of the pitch average velocity

- . defined in chapter 2).

dl +

S@

"'K /

:,.dl +  x"

The flow is assumed to be incompressible and inviscid, and the far

upstream flow is assumed to be uniform. The flow is thus irrotational and

the vorticity must lie on the blade camber lines (see figure above). Therfore,

we require:

. = o (B- 1)

Moreover, by vector identity

.oS
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-(B-2)

To satisfy both equations (B-1) and (B-2) and the conditon that the vorticity

direction must be normal to the x-y plane (2D assumption), we can write the

vorticity field as

-C A~(c CP 71 V6 (B-3)

* where pO<, is the "periodic delta" function defined in Appendix C.

To find out what G- is, consider the circulation around path C shown

in figure. we may write, by Stokes theorem,

J f (B-4)

Note that the line integrals along path and cancel out each other exactly,

and by substituting equation (B-3) into the right hand side of equation (B-4),

along with the definition of the pitch average velocity, we can show that

ff
Axf~~~4 4 4gC) )

and finally, by taking the limit as 0 -)0, L- in equation (B-3) is

defined as

*G
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Appendix C : The Periodic Generalized Functions

The "periodic delta" function, the "sawtooth" function and the

"smoothing" functions are constructed in this appendix.

1. The "periodic delta" function

The "periodic delta" function may be expressed in a Fourier series of the

form

where 4 is the spacing between blade camber lines, and o( represents

the blade camber's surfaces.

The plot of vs 0( looks likePSc)

It has the property

for any integer tl

. . .
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2. The "sawtooth" function

The "sawtooth" function may be expressed in a Fourier series of the

form

The plot of S vs oc looks like

S cC)

Its properties are:

It has first derivative related to the "periodic delta" function by
b=

- It has zero average between ( lines
"Af , a, = 0 .7..

- It has a jump in magnitude of 4 everytime an oc surface is
crossed

- It reduces to a polynomial form when (i-I) A < o< <
kvA for any integer n. Its polynomial form being

- -: -E-
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3. The "smoothing" functions

The "smoothing" functions Tk(,c) are defined as

where

Their properties are:

- they have derivatives of the forms

7 I k (C) = Ek,(d) V'

- they have zero average between K lines

f k~,
- they have polynomial forms in the intervals (n-),4 < 0 <

At A for any integer K.

T L--4--'zK(. - t- - .. ---

0I.. '2 2 (..

~~~~~....... .. ° . .o . .
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Appendix D: The "Physical" Representations of and

In this appendix, we will show the "physical" representations of

A and . We will also find the strength of the vortices, sources and

sinks which model the presence of the blades.

Consider the pitch average velocity V of the 'Finite-Thickness'

problem. By definition
f+.

4-4

using equation (4.2-16) for .can be shown to be

Sr, +.(D-1)

Since V' and -v', are the gap average velocity components,

A and - S represent the x-component and y-component of the

* "imaginary" flow in the "blade" region respectively. We expect these variables

to be proportional to the blockage distribution.

Consider the curl of

17 XV = 'i' (D-2)

' In chapter 2, we have shown that if the vorticity is distributed along the

blade camber, then its strength is related to the gradient of the y-component

of the pitch average velocity. Equation (D-2) is indeed the case.

Consider the divergence of

( (D-3)
- / /.

Since the flow is incompressible, ( V.,,+ ) represents the source/sink

distribution. Note that the boundary conditions ( V + ) 0

(equation(4.2-17)) at X = 0 and X I 1 are the conditions required for

the blade profile to close there.

if. . ". .. • . . >. - ** 1



Appendix E : Numerical Difficulties

In this appendix, we will attempt to understand the convergence problem

encountered in the iteration process for the blade camber line when

"partial smoothing" is used. We study the mathematical behavior of

/ and..

By combining A T., and in the "partial smoothing"

forms of equations (4.3-1) and (4.3-2), we arrive at the following boundary

value problems:F(,X -) ff"X Fo,-;( -) ',
=-, ,.,- (-- +

with boundary conditions

X/() =' 00
/I

and

F(X)( _  + -(r)!j(3_ )

' + F(c)-2f'(f(")x - (3-')X (E-2)

with boundary conditions

V'(,) = o

where

Xr 4-

• o
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Y =--L + c:"

~()( _____,

- -

Since itself is a function of and , we have a boundary value

problem consisting of two coupled non-linear second order ordinary differential

equations. In solving them iteratively, we expect that certain difficulties can

arise.

The strut problem

We study the mathematical behavior of /d and S by first consider

the case where is identically zero everywhere, but 7" is finite. This

is the case of a symmetric blade (or a strut). In this case, Y is also

identically zero everywhere, and the above boundary value problem reduces to

- 5Cr/ 6  ~ -- V(jr)(&3)
S )r .X r

with boundary conditions
I'-°-1

~/6 0) -
1 Tx()

.--I

/ (,- v, r,)"

Consider the homogeneous solution of the above differential equation by

assuming to be of the form

/3 -- CL

Substituting it into equation (E-3), we obtain

ss c-r) ..he

Assume "< < " Then-"



f V 7 (C)

Consider the case where << 1. Then, by definition

and thus

It can be shown that under the assumption of / « 1, we can say

that &-/E" " 0"(T) and the assumption g < is justifiable, except

perhaps near X = 0 or 1.

Finally, we can write

AL

As an example, let

2A (0-ocK) X(I-x)

where BLOCK is defined in subsection 4.5.1 . Then, it can be shown that

A A 4e. A I SILC-K

With the assumption that / < 1, we conclude that can

be a highly oscillating function, having a "natural frequency" of the order of
o~( ;?:~;

: * : :.-.- , * j - . ** .. - -.

-" .tO2.
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Finally, we look at the amplitude of By definition, i.e. equation

*! (4.2.13) in "partial smoothing" form

) -: ;1T# - ( h.,.-':"-
lT

Therefore, the above analysis shows that behaves like

V .(AT)

and thus, the source/sink distribution ( VT  + $ )oscillates.

A computer program was written to solve the differential equation (E-3)

using the Chebyshev collocation technique [71, [8). Numerical results show that

A oscillates with a natural frequency in agreement with the above analysis.

In classical aerodynamics we know that, for a smooth blade with finite

thickness, the source/sink distribution used to model its presence should exhibit

like a "sine" wave with a singular point at the leading edge. Numerically, in

order to resolve this singular point, we would need an infinite number of terms

in the smoothing series. We conclude that in the case of "partial smoothing"

(by using only two terms in the smoothing series), we are unable to represent

the usual source/sink distribution. However, such a representation is also not

necessary.
Accordingly, we will call VrX + the "modified" source/sink

distribution, and show that it can be used to produce corresponding blade

shapes satisfactorily. Thus we seek a practical method for the design problem,

using "partial smoothing", without necessarily having to go into more extensive

mathematical development.

* *",...-', .- ."< -," ." " . , '"' .. .*. " - 9 "" " " "" " " ."

• -. t , . .. a . .- a.,, . 1,' , - L} -" ) . ' ' : * _ . .. . .. -



.. .~-- .- -~- . ~ - -o ... . . ..- o -i

-100-

The loaded blade problem

From the above discussion of the strut problem, we expect expect both
/ and to have oscillating behaviors when the blades are loaded.

Two iteration schemes for f were investigated using "partial smoothing".

We note that equations (E-1) and (E-2) have certain symmetry. Rewrite

them in operator forms: "5

- yz = (E-4)

YJ 4- oL:J

where

C/ f/ f -L 'I
F-C j 4 - P(X j

rg"=n 'r k'i> r ._

The boundary conditions remain the same as in equations (E-l) and (E-2).

Method 1

In this method, we attempt to solve equations (E-4) simultaneously for

and using the Chebyshev collocation technique.

We express // and % as Chebyshev series and convert equations

(E-4) into matrix forms:

6I

62 .
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which can be arranged in the form

- - -I:I:, -r ~ {- , ---

E A] [8]5,

*AI

X and V are solved by inverting the above matrix using an IMSL

subroutine [9].

Results show that when more than approximately 11 collocation points

are used in the calculation, convergence in + cannot be achieved. # and

are found to oscillate and their Chebyshev coefficients fail to converge.

When around 51 points or more collocation points are used in the calculation,

the iteration process diverges rapidly. Two conclusions can be made from the

results of this method:

1./ and pocess oscillating behavior as predicted by the
analysis of the strut problem. By using more than 51 collocation

0 points, the numerical calculation tries to resolve the Gibbs
phenomenon at the leading edge, but fails to do so because of
"partial smoothing".

2. The iteration process can diverge rapidly because of the very
nature of the iteration process. We note that even though we are
solving X and ' simultaneously, we are in effect solving
equation (E-4) iteratively because and its derivatives are

IF- .
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updated at every iteration. We can therefore look at the iteration
process of method 1 as if we were attempting to solve for -

)( and Y in the following manner:

a. First update

b. Then update -

dX --+

where vL, is the iteration level in the iteration process for f
Since operators o?4 and c/y. are both expected to have normal
mode solutions of oscillating behavior, we conclude that there is a
chance for a driven reasonance to occur during the iteration
process for , which can lead to divergence of the iteration
scheme itself. We think that this is indeed the case. When too
many terms are kept in the Chebyshev series, higher modes are
present resulting in a greater chance for reasonance to occur.
When fewer terms (around 10) are kept in the Chebyshev series,
we are staying away from the natural frequency of the operators

and L resulting in a stable iteration process.

Method 2

In this method, we use the iteration process described in section 4.3

Derivatives are computed numerically using two methods: Chebyshev

collocation method, and finite difference method. Numerical results show that

similar problems as in method I were encountered here. This should be

expected, as observed above, because iterations are being used.

We decided to use method 2 for our design method because of two

reasons -

71

-. . -. , . , . . - . . . . . . . .• . . . . . . *' ,. I , - - .. -
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1. method 2 is much more efficient than method I (faster, cheaper
and simpler). In method 1, we are required to invert a matrix at
each iteration of .. In method 2, we are required to compute
derivatives instead.

2. method 2 can easily be modified if we wish to keep more terms in
the smoothing series. Equations (E-1) and (E-2) are only valid when
the first two terms in the smoothing series are kept.

Finally, the finite difference scheme (central difference) is used to

compute derivatives because it is numerically more stable than the Chebyshev

collocation method.

A computer program was written using the above method. It is found

that when around 11 points are used in the calculations, convergence in

49 is achieved in about 10 iterations. When more than around 20 points

are used in the calculation, - fails to converge. In order to resolve this

problem, we propose to use a filter. The calculation procedure is:

1. when more than 11 points are used in the calculation, iterate for
# using a "filter".

2. when 11 points or less are used in the calculation, iterate for
without using the "filter".

Filtering method

Two different "filters" are developed for the above iteration scheme:

1. is filtered using a least-squares chord-wise fitting method
[10]. The combination ( + .-- A 1') in equation (4.2-22) is
filtered using a fourth order polynomial. The motivation for using
a polynomial curve fitting method is that we expect itself be
represented by a polynomial of low order. /

2. the pressure coefficients are filtered by taking the average of the

maximum and minimum envelopes of the Cp curves. The

: " '" . . .-. "" " . . - ".". " "' ." " . ." '-"- .. .-. ." - -. . .
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C p curves are filtered only near the leading edge region (0 <
X < .4). The envelopes are constructed by straight lines going
through the maximum and minimum points of the Cp curves.
This procedure has been chosen to date for its simplicity, it clearly """
admits improvement possibilities near the leading edge. But, till
now at least, this approach has compared adequately with known
results (see Text).

C.°
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Appendix F :Computer Code of "Zero-Thickness" problem

C.
C - PROGRAM NAME THIN FOR
C a MAIN PROGRAM FOR INVERSE DESIGN OF COMPRESSOR BLADES a

C *2-0 INCOMPRESSIBLE. INVISCID. INFINITELY THIN THE *
C *LOADING DISTRIBUTION IS OF PARABOLIC FORM
C.
C *INPUTS S - SPACING
C *ALPI - INLET ANGLE (DEGREE)

C'*ALP2 - OUTLET ANGLE (DEGREE)
C * 13 - NUMBER OF POINTS
C *ITER - MAXIMUM NUMBER OF ITERATIONS ALLOWED
C *ERR - CONVERGENCE CRITERIA 'ERROR*
C.
C

REAL X(I01) .VMY(1O1) .DVMfY(1OI) .DDVM(101) .FM(101) .A(1O1)
I.DA(IOI) .FNEI(IOI).F(IOI).DF(101) .DDF(1OI).PLOT(3.1oi)
COMMON/S.AO.AI.BO.Bl.PI. I3K.X.NMA.COR

C

C READ STATEMENT
C

READ(1..)S.ALPI.ALP2.IJXK.ITER.DR
WRITE(2.SO)S.ALPI.ALP2, 13K

so FORLMAT(5X. 'SPACING S a '. F6 3/SX. INFLET ANGLE ALPI z IF7 3/
* ISX,.OUTLET ANGLE ALP2 = 1,F7 3/SX,'NUMBER OF POINTS I3K:

C
c INITIALIZE VARIABLES FOR CALCULATION PURPOSE
C

NILAX:20
P1:3 141592654
RAD=57 29S77951
TANl:TAN( 017453294*ALPI)
TAN2=TAN( 017453294.ALP2)
XI3K=I3K-1
DX=1 /XI3K

SU9=O
DO S N:1.I3K
XN=N
SU'1:SUV.(l / (INOIN))

5 CONTINUE
CORzI 6449341/SUM

C
C COMPUTE COMPUTATIONAL LOCATIONS
C

00 10 1.1.13K

10 CONTINUE
C

C COM.PUTE INPUT FOR PARABOLIC LOADING CASE -
C

DO 15 1:1.13K
3:131.1-I 71-.

CONST=6 *(TAN2-TAN1)
VYT(I) :CONST. ( S.XXaeXX-XX.XX.XX0/3 )-.TANI

7
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DV,_rf(l)=CONSToXX*(l -I)
DDVk'Y(I)=CONSTs(i -2 000)
Fu(l)=CONST*(XX*s3/6 -XX..*4/12 ).TANts)OX

* DF(I)=Y'IY(I)

DENz1 *DF(I)sDF(I)
F(I)=FM(I). 08333333sS*SsDVKTCI)*(-1 *DF(I).DF(I)/DEN)

is CONTINUE

C START IEAINPOSSFOR CAWBER LINE

CCOMPUTE A AND ITS DERIVATIVE

DO 100 I=1.IJX-l

AC I) '-DF(I)*DVU(Y(I) /DEN

TERMl'-DEN.(DDF(I).DYWY(I).DFCI).DDVNT(I))
TERM2=2 'DF(I).DF(I)*DDF(I)ODVMY(I)
DA(I)= (TERMI*TERM2)DEN

100 CONTINUE
C
C COM~PUTE EDGE VALUES
C

DENO=I *DF(IJK)s2
DENI=1 *DF(1)*"2
0O=DDV1EY(IJK)s(l -2 *DF(IJX)*DF(IJX)/DENO)DEIO
81-DDV'IlY(1)s*l -2 sDF(l)sDF(1)/DEJI)/DEN1
AO=-2 *IF(IIX)'DDVIYCIIK).(1 -DF(IIX)*DF(IJK)/DENIO)(DENO

C
C UPDATE CAMBER LINE F(X)
C

XNORM=-2 oFSL"(IJX.F)/S
ERR'UAX=0
Stfl2ERR=O
XLGC=-l

1-2 'DFSUiJ'(I.FDF)/S
lox CONTINUE

00 102 1:1 AIX-I
* FNEi(I)=FM(l). 08333333sS.S.(-DVU-T(I)-A(I)SDF(I))-2 *FSUN(I.F)/S

I-XNORV
ERROR=ABS(FREWCI)-F(I))
SUMERR=SU2ERR -ERROR
IF(ERROR CT ERRMAX)XLOC=X(I)
IF(ERROR CT ERR-"AX)ERRMAX=ElRR

102 CONTINUE

C CHECK FOR CONVERGENCE IN F(X)

C
wRI7.E(2. 55)NIT.ERRMAX.XLOC

55 FORUAT(10X.'ITER 9'.12 ..' -.. ERRILAX 'F7 5

I.' AT X ' FB5)
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AVGERR=SUUERR/XI .K
IF(ERRMAX CT (I I.OLDERR))WRITEC2.54)AVGERR

54 FORMAT(//2X. 'ome ITERATION SCH4EME DIVERGES f'iso*'
I 2X.'* AVERAGE ERROR = '.F9 5)
IF(ERRMAX CT (I 1'OLDERR))GO To 998
IF(ERRMAX LE ERR)GO TO 998

C
C UPDATE VALUES FOR NEXT ITERATION

D0 103 1:1.13K-I
FCI)=FNEUCI)

103 CONTINUE
OLDERR=ERRMAX

C
I CONTINUE

C
998 CONTINUE
C
*eCCUTPUT
C

.RITE(2. 60)
60 TORKAT(//TlO. 1 .T2S. 'FM' .T37. 'FLOU ANGLE' .T5S. '7',T6?

1. 'BLADE ANGLE'/)
DO 501 121.13K
J:I3K.1-I
PLOT (2. 1) =FNEW (J)
ANGLFII=RAD*ATAN(VI*T (J))
ANGLF=RAD*ATAN(DF(J))
URITE(2.61)X(J) .71(J) .ANGLIN.FNUI) .ANGLF

61 FORMiAT(5S.?1O5)
501 CONTINUE
C
C CALL JCF PLOTTING SUBROUTINE
C

CALL UPICTR(PLOT.3.I3K.QT(1.2).9X(3).QLABEL(4)
I.QYLAD(*DLADE (82] - MEAN STREAMLINE (#1IP)
1.QXLAI('AXIAL LOCATION X'))

C
STOP
END

C
C
C
C COMPUTE FUNCTION FSUN1
C

FUNCTION FSUI(I.F)
REAL F(101).X(101)
COMMVON/S.AO.A1.30.31.PI.I3K.X.NNAX.COR
REAL LANDNi

DO 100 MmINI1AJ

LAYD2=2 *PI*1rUS
DELF0c(F(I)-F(I3K)).LAXDN

TI:EXP(-LAMlDM.C1 -X(I)))/LAVDN**3
TER!iO:9OsCOS(DELFO) .AO.SIN(DELFO)
TERIII:-31.COS(DELFI) .A1*SIN(DELFI)
SUlt'SIUVIT*TUM0*T2 *TERVI
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100 CONTINUE
FSUU=t S.SCORsSUM
RETURN
END

C

C COMPUTE FUNCTION DFSUN

FUNCTION DFSUM(!.F.DF)

101 FIO) .DFOF 0).XC101)
COlMMON/S. AO.A1.D0.31.PI. IJKX..MMI. CDR
REAL LAMDN

DO 100 M=1.rAA

LAXPO:EXP.ANMX(I )f.AlSS
DELFOFIsEXP(-L IDs( -))/LAM DN'

TEROSzO=-EPLCDF OS.OBI

TERMOI:-C EXPO(D0.ASINOCDSO)

SWPJ=SUM.TERM00.#TERM01 .TERM10.TEM1
100 CONTINUE

DFSUM: 5SSCOR*SUN
RETURN
EDD

C
C *sa..s.ssesesssee~ee~es~emO
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Appendix G :Computer Code of "Finite-Thickness" problem

C
C.

C *PROGRAM NAME THICK FOR
C *MAIN PROGRAM FOR INVERSE DESIGN OF COMPRESSOR BLADES *
C 2 2-D INCO2PRESSIBLE. INVISCID WITH FINITE THICKNESS 0

C sUSING THE CENTRAL DIFFERENCE METHOD TO COMPUTE
C *DERIVATIVES

C
REAL X(IO1).T(IOl).DT(tOl).DDT(1O1).RS(10l).RI(1O1).R3(O1)
I .ViX(1O1) .DVM(IOl) .DDVX(1OI) .VMTY(I01) .DVMY(1Ol)
I.DDVM.T(101) .FM(IO1).F(1Ol).FOLD(101).DF(l01).DDF(OI)
I.BETA(IOI) .DBETA(1OI).DDBETA(1Ol).DELT(101) .DDELT(IOI)

I.XLOAD(1O1).XILOAD(lO1) .CPT(I01).CP3(1O1)
I.Y(IO1) .VXT(1O1) .VTT(IO1).VXU(101) .VTB(IO1).PLOT(6.lO1)
1.AAAI (10. 10) .OSC(1O1) .SMOSCC1O1).SVCF(1OI).OPT(101)
1.A(1OI) .DA(1OI) .DDA(101).B(101) .D3(101)
REAL LAXDM
COM!ON/COMMI/S.AO.AI .30.31 .PI
COMON/COMM2/T.DT.DDT.RS.RI.RIDVMI.DVMT.DDVU.DDVMTY.FM
READ(S. .)BLOCK.S.ALPI.ALP2. IJK.NMAX. ITER.ERtR.CA.C3.CC.CD.NOPT
1. IPOIER.BLADET.DLADEB.PRESST.PRESSB
WRITECI. 1)BLOCK.S.ALPI .ALP2. 13K. ITERt.ERR.NOPT.CA.CU.CC.CD

1 FORMAT(//lSX. 'INPUT PARAMETERSW/TS. 'MAX BLOCKCAGE z='
IFIO S/TS.'SPACING '.FIO 5/TS.'INLET ANGLE ='.FIO S/
ITS. 'OUTLET ANGLE ='.FIO 5//
ITS. 'NUMJBER OF POINTS I3K ='.13/
ITS. 'MAX NUMBER OF ITERATIONS ALLOWED a '.13/
ITS. 'MAX ERROR IN F(X) ALLOWED ERRMAX a '.TIO 6/
ITS. 'FILTERING OPTION z '.11/IT?. 'BLOCKAGE AND LOADING PARMETERS'!
1T9.*A 2 '.F5 2/Tg. 'B z ',F5 2/Tg.*C '.FS 2/Tg.'D '.FS 2//)

C
C INITIALIZE VARIABLES FOR COMPUTATION
C

P1*3 141592GS4
RALPIz 017453293.ALPI
RALP22 01?453293*ALP2
RAD-S7 29577951
TANIs TAN (RALPI) J
TAW2zTAW(RALP2)
VTNz S.(TANI.TAN2)
VONSET*(I *VTU'.2)00 S
ALMPT=S*ILOCK/C2 *(CCA/(CA.C))..CA).((CB/CCA.CU))S.CB))
XIJKzIJK-I

4 D~xl /XI3K

DO 666 NzIANIAX

SUM'SUM.(1 /(XNOXN))
666 CONTINUE

CORzI 644934066/SUM
4 C

C COMPUTE LOCATION
C

DO 20 1*..1K

XCI) afi

I



20 CONTINUE
IFCNOPT EQ I)CALL S1YA&(IIKIPOUER.X.AAAI)

C
C COMaPUTE THICKNESS INPUT
C

T(IJK)z0
T(0
DO 21 1-2.IJK-1

T(I)zAMuPTo(XX**CA)o(l -Xl)**CU
21 CONTINUE

CALL DERtIV(IJIC.DX.T.DT)
DT(10
CALL DERIV(IJK.DX.DT.DOT)

C
C COMPUJTE INPUT LOADING

XLDAD(I3I0:O
XLOAD (1)z
D0 22 1:213KX-I
DXX(I)

XLOAD(I)=(XX*SCC.)*((1 -XX)..CD)
22 CONTINUE
C

CGENERATE T-COMPONENT CAP-AVERAGE VELOCITY
C

XLOADO-O
CALL XINIT(IJK.DXXLOADO.XLOAD.XILOAD)
AVPY: (TAN2-TAN1) /XILOAD( 1)
DO 23 11.,I3K

DVITY(1)=AMPV*XLOAD(I)
23 CONTINUE

CALL DERtIV(I3K.DX.DVgv.DDVI(Y)
C
C C02LPUE FUNCTIONS
C

00 2 1=1.13K
XX=X (I)
RS(I)m 5*S-T(I)
RI(I)-(SvS/12 )+( S*S*T(I))-C S.T(I)**2)
RJ(I)=--CS*S*T(I)/12 )*( 2$SsT(I).s2)-(T(1)803/6)
VL'X()c S*SIRS(I)
OVX():( S.S.DT(I))I(RS(I)..2)
DDVX(I):( SsS'DDT(I)IRS(I)e02).(S.DT(I)s.2/tS(I)0'3)
OF (I)UVMETCI)IVcXX(I)
D0F(l) =(V1X(I) ODVMY(l) -VILYCI) DVUXCI) )IVUX(I)s.2

*2 CONTINUE

CALL IINT(IIK.OX.FNO.DF.FM)
C
C CALL SUBROUTINE TO COM~PUTE EDGE VALUES
C

DDTN:2 *DDTC1)/S
RIO:RI (1)
VYTI-VIL(l)
DDVIXI=DDVLX(1)

ODV~.T1O0NT(I

DFI:VI.'Y(1)/VILX(I)



CALL ECE(ER. NW.S. TAN. TA2.DDTH. RID, Y.1DVl. DDVMr
I.FMI .FO.F1.DFO.DF1.AO.A1.BQ.81.CCR)
FOLD(IJIC)zF0
FOLD CIWP1I
DF(IJK)=DFO
DF(1)zDFI
F(I31C)=FO
F(1)zF1

C
C CUESS F FOR ITERATION PURPOSE
C

DELFO=-2 *FSU(IJK.FCLD.T.RS.1.U'MAX.COR)/S
D0 130 1:2.1 X-1
TERM1:RJ(I).RS(I),RICI)
TERN2:(-DVMT(I)-DF(I).DVMXCI))/C1 *DPCI)**2)
DELF:-2 *CTERMI.TEIM2.FSUN(I.FOLD.T.RS.X.NMA.COR))/S
FOLD(I)zFUCI).DELF

130 CONTINUE
CALL DERIV(IJK.DX.FOLD.DF)
DF(IJK)2DO
DF(1)-DFI

C
C CALL GUESSING SUBROUTINE FOR DETA AND DDELT
C

CALL GUESS(IJK.S.X.T.DV.DDV.DETA.OETA.DDELT.DDDELT)
C

WRITE(2. 10)
10 FOR1IAT(SX.'GUESS INPCTS//TIO,. W.T25. 'FT40. UETA .TSS. OELT*

DO 11 lm:.131

DXX=DVMX(I).DBETA(I)
DYT:-DVY'(I).OOELT(I)
:RITE(2. 12)X(1) .FOLD(I).BETACI) .OELT(I) .DKX.DTY

.2 FORYAT(6(SX.FIO 5))
11 CONTINUE

C ITERATION PROCESS FOR CAMBER LINE
C

NNN:0
OLDER2:100
OLDER: 100
DBETA (IJK)2-DYMI(IJX)
DBETA()x-DVMX(I)
DDELT(IIK)zDV'JT(IJK)
OOELT(1)zDVKY(l)
DO 999 NN:.ITER
NNNN:NNNN. I

C
CALL HOKOB(NIIA.IJK.FOLD.T.NS.X.PHIHUD.PHINMh.COR)
CALL OERIVCIIK.DX.PHIHX.DPHIHX)
CALL DERIV(IJK.DX.PHIlHTB.DPHIKY)

C
DO 110 1:1.13
DEUz1 *DF(1)002
A(I):CDF(1)S(-DVILTCI).DDELTCI)).DVMX(I)DETA(I))/DEN

110 CONTINUE
CALL DERIV(IJK.DX.A.DA)
CALL OERIV(IJK.DX.DA.DDA)



........... ..- 1...-

C

DE~zI *DF(I)002
D(1)z(DDVILT(I)-DDDELT(I)'A(Z)*DDF(1).2 *DA(I)*OF(Z))/DEB

Ill CONTINUE
CALL DERIV(I3K.DX.D.DB)

C
DO 112 1=2.13K-i
TERM2DT(X)e(RSI)eRI (l).RS(I))/RSCI)e.2
DBETA(I):RJ(I)s(DDACI)-DB(I)eDF(I)-ICI)sDDF(i))/RsCI)
l.TERM.CDA(l)-I(I).DF(I))-DPHIHX(I)
DDELTCI)=-RJ(I) .D3(I)IRS(I) -TERdi.3(I).DPHINYCI)

112 CONTINUE
CALL DE IV (IJK. DX. DETA. DDETA)
CALL DEUIVCIJK.DX.DDELT.DDDELT)

C
C COMPUES CAMBER LINE
C

DO 155 IzlI IN

OPT CI)zOSC( I)
15$ CONTINUE

IF(NOPT EQ 1)CALL SMOOTH Q X. IPOVER. 1. AAAI. OSC. SMOSC)
C

ERRMAXO0
SUVERRzo
XLOCr-1
DO 160 1z22.1K-I
TERV1=RI(I).RSCI)sRI(I)
IF(NOPT EQ 1)OPT(I)mSMOSCCI)
DEL?2-2 .(TERIeO*PT(I).FSUN(I.TOLD.T.RS.X.NMA.COR))/S
F(I)zfli(I).DELF-DELF0
ERROR'ABS(F(I)-FOLD(I))
SU!P.RRzSUIIERR.ERROR
IF(ERROR OT ERRMAX)XLOCzX(I)
IF ERROR CT ERIMAX) ERRMAXzIRROR

160 CONTINUE
CALL DERIV(IJX.DX.F.DF)
DF(I3K)=DFO
DFC1)=DFI

C
C WRITE CONVERGENCE
C

IF(NOPT EQ 1)00 TO 16S
% 6 RITE0i62NNNE.AXX

12 FORIAT(ISX. ITERATION 0'.13 ----- . ERRMAX xY r7
1.' ATX v '.F8 5)
IT(ERRMAX GT (I 3*OLDER))1RITE(l.163)AVGERR

163 FOR2AT(//2X. '*se* ITERATION SCHEME DIVERGES 'I'''ssss/

1 2X.' AVERAGE ERROR z '.9 5)
IF(ERRYAX GT (1 3*OLDERR))GO TO 998
IF(ERR!LAX LE ERR)GO TO 998
GO TO 169

161 ERtRAVCzSUMYERR/XIJK
WRITECI. 166)NNNN.ERRAVG .-

166 FORMAT(ISX. ITERATION $'.13.'-----'.'ERRAVG a'." S)
IF(ERRAVG LE ERR)GO TO 998

C
C UPDATE VALUES



C
169 DO 170 1=2.11K-I

FOLD CI) =F(I)
170 CONTINUE

OLDERR=ERRNAI
OLDER=ERRAVC

C
999 CONTINUEz
C
996 CONTINUE
C
C WRITE
C

WRITE(1 .60)
60 FORYAT(//TlO. V'.T24. LOAD(X)*.T40.'TCI)'.TSS. 7N(X)*.T70. 7C1)'/)

DO 501 Iz1.I3K

PLOTCI . I)z(J)+TJ
PLOT(4.1 =Fl-(J)

PLOT(5. I)=DLADET
PLOT(6. I)zBLADEU
TEIX=AMP"eXLDAO Ci)
SUITECI.61)X(J) .TDNM.T(J) .FN(J) .7(3)

61 FORMAT(5(SX.FIO 5))
501 CONTINUE

CALL. QPICTR(PLOT.6.I3K.QY(2.3.4.S.6).QX(1).QLAIEL(14)
I.QYLAB(eULADE SHAPE').QXLAU('AXIAL LOCATION X-))

C
WRITE(2. 70)

70 FORMIAT(I/SX. OUTPUT'11T10. I .T2S. 1* .T40. UETA .TSS.'DELT-
1.70.'DXX'.T85. 'DYVI/)
DO 71 3:113JK

DXX=DV(I) #DVETA(I)
DTTz-DV!T(I) #DDELTCI)
IFCNOT EG O)IRITE(4.7S)D9ETA(J) .DDELT(J)

75 FORL2AT(2C2X.FIO S))
WIIITEC2.72)X(I) .7(I).IETACI) .DELT(I) .DXX.DT

72 FORXAT(SCSX.FlO S))
71 CONTINUE
C
C CALCULATE PRESSURE COEFFICIENT
C

DO 800 1-1.13K7

Boo CONTINUE
CALL VEL(I3K.NMA.COR.X.Y.F.DF.DDF.RS.RI.R.PIHI.PITU
1 . V'fl VU. DDVMX. VI~T. DYILT.DDVUT. DETA.DDODETA. DDELT .DDDELT

I. YXT. VYT)
4 DO 801 1:1.13K

Y(I)zFCI).S-TCI)
801 CONTINUE

CALL VEL(IJK.N'4A.COR.X.Y.F.DF.DDF.RS.RI.RJ.PHIHXB.PHIHTD
1. lrIX. DV'ZX. ODYIIX. VMT. DVIT . DYXY. DIETA. DDBETA, DDELT . DDDELT
I.VX3.VYM)
TRITE(1 .799)

799 FORAT(//TIO. X .T25. Cp.' .T40. Cp-'.T53. dslt)PI/)
DO 802 1=1.13K



VTz(VXT(I)**2.YT(1)6*2)00 5

Veu(VXUCI)*e2+.Y(I)@*2)os 5
CPT(I)m1 -(YU/VOSET)002

802 CONTINUE
C
sic DO 604 IzilIJ

DIFF=AUSCCPTJ)-CPBCJ))
PLOT(2. I)xCPT(J)
PLOT(3. I)uCP(J)
?LOT(4.Z)zPRESST
PLOT CS.I)=PRESS3
IRtTE(3..)X(J) .CTCJ).C?3(J).DIFF
SHITEC1.80S)X(i) .CPT(J) .C?3(J).DIFF

80S FORHAT(4(5X.FlO S))
804 CONTINUE

CALL QPICTR(?LOT.6.ZJX.QTC2.3.4.5).QX(l).QLADEL(14)
1.QYLA9('PRESSURE COEFFICIENT Cpl),QILBADCAIAL LOCATION X'))

C
*C WRITE DUADE SHAPE TO A FILE FOR USE IN THE NASA DIRECT METHOD

C
D0 900 1:1.131
NRITEMOV)XI)

900 CONTINUE

DO 901 l.2.1317.1

WRITE(6..&)USUR
902 CONTINUE

DO 903 1:2.131

TSIJRFzF(l) .T(I)
WUITEWO.B)SURF

903 CONTINUE

C

C

FUNCTION FSWV(IOLD.T.RS.X.KX.COR)
REAL FOLDC1OI.T'(lOI)RSCIOI).XCIO)

CO!=0N/COiL0-l/S.A0.A1 .30.31 .PI

RELO(LD()FL(I31)LA

TISTTT.EIP(-LAMDVN'( X))/LAD e3

TERgOaDOOCOS (DELFO) .AOSSIN (DELFO)



TERtl-31'COS(DELF!) .AI SIN(DELFI)
USUII.MTO*TERXO.Tl eTENII

100 CONTINUE
FSUMZCORoSUN
RETURNI
END

C
C

SUBROUTINE DE1UIV(IJX.DX.F.DF)
REAL F(l0I).DF(I01)
DF(I31)2 So(-7(IJK-2)*4 .7(131-1)-3 .F(IJK))/DI
D7(1)= Se(3 *7(1)-4 ef(2)#rC3))/DI
DO 1 1=2.I3K-l
DF(I)2 IS(7(1-1)-F(1*1))/DI
CONTINUE
RETURN
END

C
C
C

SUBROUTINE XINT(IJK.DX.XINTPO.F.XIUTT)
* REAL F(101) .XINTF(101)

SUVZXINT7O
X!NT7(IK)-SUN
DO I 1=2.1.1K
J=IJ1.1-I
SUV=SUN.S(CJ.(.1)D
XINTF(J)2SUH

1 CONTINUE
RETURN
END

C
C



C SUBROUTINE EDGE EDGE FOR
C THIS SUBROUTINE CALCULATE EXACT LE AND TE VALUES
C IN ORDER TO ACCELERATE CONVERGENCE IN F(X)
C

SUBROUTINE EDGE(ERR.NNA.S.TAII.TA2.DDT.RIO.VIYI
1.DDVMXI.DDVYIT.FNI.FO.F1.DFO.DFI.AO.AI.30.8l.COR)
REAL LANM
P1:3 141592654

' FO.O
DFOmTANI
IC:O

100 SUMOI:O
SUNI 1:0
SUM02z0
SU1122=0
SU1M03:O
SU!-33=O
SUROO20
SUv:0
DO 101 N:1PIMAX
XM&M
LAMDNs2 *PI.XNIS

DELF=LANDNO (FO-FI)
CC: EX?(-LANDM) /LAiIDNS.2
sUMSIN2CC*SIN(DELY)
SU.CC0SCC*COS (DEL?)
S1J1101SUIOICoRsSUNSIN
SUvII:SUmI1.COR*SUICOS
S11-02SUO2CRSU1SINLADM
SW.-122:SUP-22CRSUCOS/LAMDM
SUVO3zSUM03CR*SUVSIN*LAMiDU
Stfl33SU33CR.SUMCOS*LAMDM
SUIOO2SUWOO+COR/LAMDM..3
SU!-SU3ICR/IJJWN

101 CONTINUE
ZI:RIO.DDTH-(1 -DFI*02)
ZZZ-(2 /Rlo)s(SUIIOIs.2-SU!11s.2)
Z2- (- S.RIO.ZZZ)oDD071

Z22=( $*RIO.ZZZ)eDDTH
Z32(4 /RIO) sSUIIO1SSUNIISDDTH
SAI=((2 .DDTIHe(SUN1.TANI.SU1101))/RIO-DDVI)
SA2=((-2 .DDTH.CSUNOI-TAN1.SUN11))/RIO-DDVMTI)
SA3xZI -Z2
SA4z2 *DF1.Z3
SA22zZI-Z22
DENxSA3*SA22#SA4*SA4
Al: (SAl sSA22#SA2.SA4) /DEN
31: (SA2*SA3-SAI eSAQ~/DEN
AO:2 *(-AlaSUIIII-3ISSU9OI-1 )/RIO
30:2 *(AI.SU!IO1-I1*S1J111-TANI)/RI0
XNOR!~:-3O.SUlO0-A1 .SPi102.0Ul Sti22

FTE:F!1-30.SLi-22.AO.SUO2.31.SUOO-XNORI
DPHIHT:-SU1.0.SU133s31 -SUIIOSSAI
DPHII4X:SU11AO-SU1103*31 -SU!33*A1
RATIO: (2 *DPHIHX-SOAO) / (PHIHXO*2- 25SSAO)

DFLE: SeDPRIHT.RATIO
XWU?.TE2:Vl!T1. ?Se81sRIO#IO*SUVII#AOOSUIOI
DEWTEz1 * 7S*Al*RIO#I0.SUMIIOIAOOSUMII

DFTE2XWUXTE/DENTE



ERI=ABS(FTE-F1)
ER2=ABS (DFTE-DFI)
ER32ABS(DFLE-DFO)
FI: FTE
DFOzDFLE
DF1zDFTE
IC: IC.
I?(ERl GT ERR OR ER2 GT ERR ON ER3 GT.ERR)GO TO 100
RETURN

* END



C
c SUBROUTINIE NAME CUESS F~OR

* .C THIS SUBROUTINE INITIALIZE BETA AND DELTA
* -C TO STARiT THE ITERATION PROCESS OF PCI)

C
* SUBROUTINE GUESS(IJX.S..T.DVMX.DDVI.OBETA.DDETA.DDELT.DDDELT)

REAL DBETA(101).DDBETA(IOI),DDELT(1O1).DDDELT(1O1).DVMXIOI).DVMfY(101)
i.DDVX(11) .DDVM(101) .X(11) .T(10I)

Wk C
- P1=3 141592654

DO I lI1.IJX
1121(1)
TCOS=COS(2 *P1.11)

* TSIN=SIN(2 *Pls1)
* DBETA(I)=-DVNX(I)OTCOS

DDBETA(l)--DDV1VX(I)OTCCS#2 *PI.DVUX(I).TSXN
DDELT(I)x0

DDDELT (1)x0
I CONTINUE
C

RETURN
END

0-



C
C SUBROUTINE NAME HOifOB FOR
C THIS SUBROUTINE CALCULATES THE HOLJGENEOUS
C TER1IS PHIHXD AND PHIKYD
C

SUBROUTINE HOMOBCNMAX.IIX.F.T.RS.X.PHIHXU.PHIHTB.CR)
REAL F(lOl).X(IOl).T(I0I).RS(l0I).PHrHxe(IoiLPHINTD(10l)

C0'-MON/COhIMl/S.A0. Al. 9D0,BIPI
* . REAL LAMDU

DO 200 1=1.13K

SUIMY=O
DO 100 N=I.NM

LAMDM2 OPIOXW/S
DELFO'(F(I)-F(IJK))*LANDU
DELF1=(F(1)-F(1))*LAbMDM
XSIN=SIN(LAMDVisT(I))
EXPO=EXP(-LAgDMX(I))
EXPI=EXP(-LAgMD*i(1 -X(I)))
SI NO=S IN (DELFO)
SINI=SIN(DELFI)
COSO:COS(DELF0)
CDSI=CGS(DELFl)

TO=XSIN*EXPO/LAVWM*03
TI:XSIN*EXPI/LAM*i03
SU. X-iTO' CBOSINO-AO*COSO) .Tl*(Bl*SINI*AIOCOSI)
SUII'T:SUt.JTOS (-BOsCOSO-AO'SINO) .TI@(31.COSI.AISSIN1)

100 CONTINUE

PHIHXDI) CDU.SU'f/RS(I)
PHIHfTB(I)CR*SUMY/RS(I)

200 CONTINUE
RETURN
END
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C
C SUBROUTINE NAME VEL FOR
C THIS SUBROUTINE COMPUTES TEE VELOCITY FIELD
C IN THE CASCADE REGION (REGION 2)

C
SUBROUTINE VEL(IJR.MM XCDR.X.Y.F,DF.DDF.RS.RI.RI.PHIHXB.PHlIHYB
S. VII. DVMX . DOYMI. VI!.DYMY. DDVM[YDBETA. DDBETA. ODELT.DDDELT VI. VT)

REAL X(101) .Y(101) .F(1O1) .DF(101) .DDF(101) .RSC1oi) .RI(101) .RJ(I0I) -

I.DVMY(101) .ODVM(101).DDETA(101).DDBETA(I01),DDELT(l01),DDDELT(1OI)
I.VXCIOI) .VY(101).TVX(l01),TVY(IOIlLAX(101).DX(I0l)
1 PHIHXCIOI) .PHIHY(101)
CCIOLON/COM1/S.AO.A1 .D0.31.PI

C
CALL HOMO(NMAX.IJX.F.X.Y.PHIHX.PHIHY.COR)

C
AX(IJX)=AO
AX(1) =Al
BX(IJX)=BO
BX(l) B1
DO 200 1=2.I3X-1
DEN=(l *DF(I)**2)o*3

X3=DDF(I)*(l -3 *DF(I)**2)
X4=DF(I)*DDF(I)0(3 -DF(I).s2)
DXX(=DV~iX (1) .DETA(I
DDXX=DDV4X(I) .DDETA(I)
DYY=-DV1Y(l) .DDELT(I)
DDY-DDVHY(l) .ODDELT(I)
AXCI) =(Xl*DDYYX2.DDXX.X3*DTT-X4*DX) /DEN
BX (I) =(-X2.DDT'Y.X1 .DU.X4DYY.X3DXX)/DEN
7Vr(I)=(DrY-OF(I).OxV)/( *DF(I)*.2)
TVT(I)=(DXX.DF(I).OYTY)/(I *DF(I)002)

200 CONTINUE
C

D0 100 I=1IJ1(
ALPHA=T(I)-F(I)
RST= S.S-ALPHA
RIY=-(S*S/12 )-( S'S*ALPHA)-( 50ALPHAs'2)
CLCC^RjcII/RS(r)
TE.!.XRSY'TVX(I). (CCC.RIY) sAXCI)
TERMY=RSY.TVY(I). (CCC.RIT)*BX(I)
VX(I)=V!X()PHIHX(I)-PHIHX(I)TERMX
VY(I)=VUTY(l).PHIHT(I)-PHIHD(I)TERIY

100 CONTINUE
C

RETURN
END



C
C SUBROUTINE NAME HOMO FOR
C THIS SUBROUTINE CALCULATES THE HOMOGENEOUS
C TERMS PHIHX AND PHIHY
C

SU'BROUTINE HOMO (N)WX. I X. F. X. Y, PIIX.PHIRY. CDR)
REAL F(IO1),X(l0I).Y(1O1).PHIHX(IOI).PHIHY(lO1)
COYMON/COM9a1/S.AO.AI.BO.Bl .PI
REAL LAMDU
DO 200 11.,IJX
SUmflsO
SU!AY:0
DO 100 MzI.NMAI
1M~m
LAMDY=2 *PI*XM/S
DELFO=(Y(I)-FIJC))LAMDN
DELFI=(Y(I)-F())LAMDM
EXPO=EXP(-LAKDHiOXCI))

SINC=SIN(DELFO)
SINI=SIN(DELFI)
COSO=COS(DELFO)
CGSI=COS(DELFI)
T0zEXPO/LAMDY..2

SU.7X:SUMX.TOs (-D0.SINO.AOSCOSO)TI.(UI.SINI.AlsCOSl)
SUP.rT=SU3Y.TOs(BO.COSO.AOSINO).T1.CIISCOS1-AIaSINI)

100 CONTINUE
PHIHX(I)=CDOSU!X
PHIHYCI)=CORSUMY

200 CONTINUE
RETURN
END

A.
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C
C SUBROUTINE NAME SMOOTH FOR
C THIS SUBROUTINE SMOOTH A GIVEN FUNCTION F(X)
C USING A MODIFIED LEAST-SQUARE SCHEME
C

SUBROUTINE SMOOTH(XJX. IORDER.X.A.F.SMF)
REAL X(L01).F(10I). SMF(Il).AI(10.1O).8C10).SMCT(I0)

DO 400 Jul1RDER-I
SUMC0
D0 500 Ia1.I3K
SUM=SUN.(F(I) -F(I JX))sX(I).e3

So0 CONTINUE
DC 3) SUN

400 CONTINUE
D(IORDER)-F(1) -F(IJK)

C
DO 100 It1.IORDER
SuM:0
DO 200 J:1.IORDER
SIJM:SUV+AI(I J)*I(J)

200 CONTINUE

SMCF(I)=SUII
to0 CONTINUE
C

DO 600 I:1.13K
SUMF(I3K)
DO 700 Jx:IIORDED
SIJMSMI1S1CF(J)(()0*I)

700 CONTINUE
SYF(I)SUM

600 CONTINUE
C

RETURN
END
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C
:SUBROUTINE NAME SMAI FOR

C SUBROUT INE USED TO GENERATE MATRIX [l AI
C USED IN THE LEAST-SQUARE FITTING FILTER
C

SUBROUTINE StEAI(I3IC.IORDER.X.AI)
REAL A! (10.10) .3(10).WKAREA(20) .X(101) .DA(19)

C
DO 100 I:2.210DR

D0 200 1:1.13K
sSUl.X(1) so I

200 CONTINUE
X1(I-1)=SUv

100 CONTINUJE
C

KZc
DO 10 I1 lRDER
Do 20 Jx1 laRDER
AI(I. J):xII(Kj)

20 CONTINUE
K=X.I

to CONTINUE
* D0 300 JzI.IORDER

Al (ICRDER. J)=1
300 CONTINUE
C

DI:.1
CALL LINV3F(AI.B.1.IRDER.1O.D.D2.WEA.IERt)

RETURN
END

%64

, j
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C
C SUBROUTINE NAME FILTER FOR
C THIS SUBROUTINE FILTER THE PRESSURE
C COEFFICIENTS
C

SUBROUTINE FILTER3(IJK.X.FFFILT)
REAL X(101).F(101).FT(101).ZT(I01).FD(101).XB(10I).FFILT(101)
XIJIC:IJK-1
PI=3 141592654
DX:1 /XIJK

C
Neso

IM13-1
100 I=141

IM( CT (IJK-1))GO TO 999
IF(F(I*l) CT F(I))GO TO 100
IF(I EQ IMO0 TO 20
KT-NT.1
FT (NT)ZF (I)
XT(NT)=X(I)

200 1:1.1
IF(I CT (I.JX-I))GO TO 999

4 20 IF(F(I*I) LE FCI))O TO 200
NBUNB.1
FB(NB)=F(I)
XI(NB)=X(I)
GO TO 100

999 CONTINUE
FT(NT.1)zF(IXK)
FB(ND.1)zF(I]K)
XT(NT.1):X(IJX)
XB(NB#1)=X(IJX)

C
XP=NT*1
CALL FIT(IIK.DX.NP.X.XT.F.FT)
NP:N3.1
CALL FIT(I.JX.DX.NP.X.XB.F.FB)
DO 700 Iz1.11K
FFILT(I)z $.(FD(I)+FT(I))

700 CONTINUE
C

RETURN
EN

C
C

El SUBROUTINE FITUIX.DX.NP.X.MT.F. FTD)

REAL X(101) .XTBI0) .F(101) .FTBCIOI) .FFIT(101)
I.XFILT(101).FILTI(IOI).FILT2CIOI).AAAI(10.10)

C
XNST:1TB(1) /DX
NST=IIK-IIFIX(XNST)
NSTlzKST
DO 10 122 NP
rJ=f (FTBCI) -FT3(I-1))I(XT9(I) -XTBC!-1))
XD:FTB(I) -XIIXTDCI)
XJ=XTI(I)/DX
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DO 20 N=NST.3

20 CONTINUE

NST=JJ
10 CONTINUE
C

DO030 I1.NSTI Ai

30 CONTINUE.
DO 31 I=NST1.1.I1C
FTB(I)=FFIT(I)

*31 CONTINUE
C

Nz0

DO 100 X4NSTl.I3X-2
N=N*1

XFZLT(N)=X(I)

100 CONTINUE 2
CALL SMAI(N,4,XFILT.AAAI)
CALL SIWOTH(I.4XFILT.AMAI.FILTI.FILT2)

DO 101 I=NST1.I]K-2

FTB(I)=F!LT2(l)
101 CONTINUE
C

DO 200 I=NSTI-3.IJK-3

200 CONTINUE
DO 201 I=NST1-3.I3K-5
FTB(I): 3333*(FTB(I.2)*FTICI)#FTB(I-2))

201 CONTINUE
C

RETURN
END

C
C *ge..ge.. .. g* e eg
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